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Abstract

Common ratio (CR) and common consequence (CC) problems present two foundational devi-

ations from expected utility (EU) but have been studied independently, with little exploration

of experimental parameters, and using paired choice tasks that can yield biased inference. We

overcome these limitations using valuations and a wide range of parameters to study connected

problems, which also capture mixture preferences (MX). We empirically characterize combi-

nations of CR-CC-MX preferences throughout the parameter space, documenting systematic

sensitivities and substantial heterogeneity inconsistent with leading non-EU models. We specu-

late on a model of “upside potential” that explains the modal pattern and captures additional

data features.
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1 Introduction

The common ratio effect (CRE) and the common consequence effect (CCE) are two prominent

deviations from expected utility (EU). These effects were first proposed as thought experiments

by Allais (1953) and later popularized by Kahneman and Tversky (1979), who treated them as

foundational features of preferences that motivate the shape of the probability weighting function

in prospect theory. The subsequent literature has found empirical support for both effects, and

researchers have developed many non-EU models of decision-making to accommodate them.

Despite the widespread acceptance of the CRE and CCE as stylized facts, the existing evidence

has three major limitations. First, the experimental evidence on each effect is based on a limited

set of experimental parameters, while behavioral theories motivated by this evidence assume that

these effects reflect global features of risk preferences. Second, previous studies have virtually always

analyzed the CRE and CCE independently. However, there is an overlooked connection between

the two problems that permits studying how the two phenomena relate to each other as well as how

they relate to a third key property of risk preferences: attitudes towards probabilistic mixtures of

lotteries (MX preferences). Third, the prior literature has almost always studied the CRE and CCE

using paired choice tasks, and these tasks can yield biased conclusions in the presence of commonly

assumed forms of choice noise. In McGranaghan et al. (2024), we build on prior work highlighting

this bias in CRE experiments and demonstrate how paired valuation tasks can provide unbiased

inference under these circumstances.

In this paper, we address these three limitations by using valuation tasks to study connected

common ratio (CR) and common consequence (CC) problems across a broad range of experimental

parameters, including many not previously explored in the literature. While we observe a CRE

and CCE for some parameter values, the magnitudes of these effects vary systematically with the

parameters to the extent that neither the classic CRE nor CCE generalize across the parameter

space. Indeed, we find a large reverse CCE for some parameter configurations. Moreover, we

find a robust attraction to mixtures for much of the parameter space we cover. Combining these

results for connected problems, we empirically characterize combinations of CR-CC-MX preferences

throughout the parameter space, and these patterns are inconsistent with EU and leading non-EU

models. We posit a post-hoc theoretical model of “upside potential” designed to explain our modal

mean preference. Encouragingly, this model successfully predicts some of the more nuanced data

patterns we observe, suggesting it might hold insight for future theoretical work.

In Section 2, we summarize and reanalyze the existing literature on the CRE and CCE. Allais

(1953) first introduced the CR problem, but the canonical version comes from Kahneman and

Tversky (1979) and presents individuals with the following pair of choice tasks:1

1Throughout the paper, we suppress the probability on $0. For instance, in Lottery B, the remaining probability
of 20 percent is on a $0 outcome.
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AB Choice: Lottery A: 100 percent chance of $3000 vs. Lottery B: 80 percent chance of $4000

CD Choice: Lottery C: 25 percent chance of $3000 vs. Lottery D: 20 percent chance of $4000

In this example, lotteries C and D are created from lotteries A and B by scaling down the proba-

bilities of the non-zero outcomes by a common ratio of 0.25. The canonical version of the CCE is

from Allais (1953) and presents participants with the following pair of choice tasks:

AB1 Choice: Lottery A: 100 percent chance of $1M vs. Lottery B1: 89 percent chance of $1M
10 percent chance of $5M

CD Choice: Lottery C: 11 percent chance of $1M vs. Lottery D: 10 percent chance of $5M

Lotteries C and D are created from lotteries A and B1 by changing the common consequence of an

89 percent chance of $1M into an 89 percent chance of $0.
EU predicts that CR and CCmanipulations should not impact an individual’s relative preference

for the two options. In contrast, the CRE and CCE describe a systematic empirical pattern of

people appearing more risk-tolerant in the CD problems relative to the AB and AB1 problems,

respectively, resulting in aggregate choice frequencies where the share of individuals choosing A is

larger than the share choosing C in both cases.

The prior literature has conducted many experiments on the CRE and CCE. Two recent meta-

studies by Blavatskyy et al. (2022) on the CRE and Blavatskyy et al. (2023) on the CCE report

a total of 224 experiments (143 CRE and 81 CCE) across 48 studies. They document that the

CRE and CCE are sensitive to various experimental design choices, including experimental param-

eters. We leverage their data to highlight three further points. First, these existing experiments

cover a limited set of experimental parameters. Second, these existing experiments have almost

always studied the CRE and CCE as independent phenomena. Third, this literature relies almost

exclusively on paired choice tasks.2

By studying the CRE and CCE as independent phenomena, the prior literature has neglected a

natural connection between the two problems.3 To illustrate the connection, consider the following

three choice tasks:
2In fact, the two meta-studies cover only experiments that use paired choice tasks. McGranaghan et al. (2024)

provide a summary of CRE experiments that use the valuations approach that we describe below, and report only
10 experiments across four studies.

3Of the 48 studies covered by the two meta-studies, only 10 contain both CRE and CCE experiments, and only
two of those discuss the CRE and CCE as connected phenomena (Bateman and Munro, 2005; Chew and Waller,
1986).
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AB Choice: Lottery A: 100 percent chance of $27 vs. Lottery B: 90 percent chance of $35

AB111 Choice: Lottery A: 100 percent chance of $27 vs. Lottery B1: 9 percent chance of $35
90 percent chance of $27

CD Choice: Lottery C: 10 percent chance of $27 vs. Lottery D: 9 percent chance of $35

The combination of the AB and CD choices constitutes a CR problem while the combination of

the AB1 and CD choices constitutes a CC problem, and thus three tasks suffice to study both

problems. But this formulation also highlights that there is a third comparison: the combination of

the AB and AB1 choices. Since lottery B1 is a mixture of lotteries A and B (in this case 90 percent

A and 10 percent B), this third comparison reveals people’s attitudes toward mixtures. We refer to

the combination of the AB and AB1 choices as a mixture (MX) problem, where EU predicts that

people should be neutral to mixtures. We refer to a finding of people appearing more risk-tolerant

in the AB1 problem relative to the AB problem as a mixture effect (MXE). In other words, the

MXE pattern suggests that individuals prefer the probabilistic mixture of A and B to both A and

B.4

We refer to the combination of an AB task, an AB1 task, and a CD task as a connected CR-

CC-MX problem. We can characterize a connected CR-CC-MX problem using two parameters.

The first is the probability of the non-zero outcome in lottery B, which we denote by p (0.9 in the

example above). The second refers to both the common ratio that converts lotteries A and B into

lotteries C and D and the probabilistic mixture of A and B that generates lottery B1, which we

denote by r (0.1 in the example above).5

Each connected CR-CC-MX problem permits us to simultaneously identify three features of

underlying preferences for a given pp, rq parameter combination: whether people have a common

ratio preference (CRP), a common consequence preference (CCP), and a mixture preference (MXP).

In each case, a person might have that preference, its reverse (which we label RCRP, RCCP, or

RMXP), or might be neutral to the manipulation (for which we use �CRP, �CCP, and �MXP).

We can compare these empirical patterns to the predictions of various theories of risk preferences.

EU implies that people are neutral to all three manipulations and, therefore, that they have �CRP-

�CCP-�MXP. In Section 2.2, we delineate the predictions from leading non-EU models. All

predict a CRP and a CCP for the focal suggested range of their key parameters, and most further

predict either an RMXP or an �MXP; that is, people either dislike or are neutral to mixtures.

Furthermore, in most cases, these models predict these patterns apply globally and that they are

independent of pp, rq. These are predictions that we can test using connected CR-CC-MX problems.

4The MX problem relates to tests of betweenness and to work on deliberate randomization; we discuss these
literatures in Section 2.4.

5The canonical version of the CRE has p “ 0.8 and r “ 0.25, and the canonical version of the CCE has p “ 10{11
and r “ 0.11.
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By relying almost exclusively on paired choice tasks, the existing literature may be subject to

biased conclusions if there is differential choice noise across tasks. In Section 2.5, we build on prior

work in McGranaghan et al. (2024) to describe how paired choice tasks do not reliably reveal the

underlying preference components, and how the inference problem is even worse when we want to

compare three binary choice tasks, as in a connected CR-CC-MX problem. 6 Hence, our primary

analysis focuses on valuation tasks in the form of stated indifference points implemented using

multiple price lists. For instance, in a CD valuation task analogous to the CD choice task above,

a participant selects the amount received with a 9 percent chance that makes them indifferent to

a 10 percent chance of $27. Unlike choices, these valuations can deliver credible measures of CRP,

CCP, and MXP that permit robust inference under common assumptions on the form of noise.

In Section 3, we describe the details of our experimental design. We recruit 2,102 participants

through Prolific for an online experiment. In stage 1 of the experiment, we elicit a series of valua-

tions. Each participant provides AB, AB1, and CD valuations for four different pp, rq combinations.

Across all of our participants, we implement a total of 20 different pp, rq combinations that cover a

wide range of the parameter space. In stage 2 of the experiment, we present the same participants

with binary choice tasks linked to the valuation tasks they saw in stage 1. These additional choice

data allow us to validate our first-stage results, assess whether paired choice tasks yield biased

inference, and connect our findings to the prior literature.

Section 4 describes our main results. We first analyze mean preferences across all participants.

We find that the three features of preferences react differently to changes in the experimental

parameters. CRP is highly sensitive to the common ratio r, where it gets larger for smaller r and

disappears entirely for the two largest values of r that we consider. In contrast, CCP is highly

sensitive to the high-prize probability p, where it gets smaller for smaller p, and there is substantial

RCCP for the smallest value of p that we consider. Finally, we find a robust MXP that gets larger

for smaller r and smaller p. Together, these results yield combinations of CR-CC-MX preferences

with two striking regularities. On one hand, for parameters close to their values in the canonical

CR and CC examples (i.e., for large p and small r), we find CRP and CCP with limited MXP,

consistent with the conventional wisdom. On the other hand, for small p and small r, we find a

robust pattern CRP-RCCP-MXP, which is inconsistent both with EU and leading non-EU models.

We next analyze behavior at the individual level. Specifically, we investigate the distribution

of behavior across the 27 possible combinations of CR-CC-MX patterns, where a person might

exhibit the effect, the reverse effect, or no effect for each. We find that mean behavior masks

substantial heterogeneity. The modal pattern at the individual level aligns with the CRP-RCCP-

MXP combination that frequently appears in mean preferences, but it accounts for only 15 percent

of observations. Of course, much of the variability in behavior at the individual level could be due

to noise. Because our experiment elicits multiple measures of the same valuation within-subject,

6While these inference challenges are not the primary focus of this paper, in Section 4.3 we document empirical
evidence demonstrating their relevance for our CR, CC, and MX choice tasks.
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we are able to structurally decompose the variability in valuations into an underlying preferences

component and a noise component. We estimate that roughly half of the variability in valuations

is due to preference heterogeneity. The underlying distribution of preferences that we estimate

still yields a modal pattern of CRP-RCCP-MXP, but it also still implies substantial heterogeneity.

Hence, any non-EU model of risk preferences must be able to explain the combination CRP-

RCCP-MXP while also having the flexibility to permit different patterns across individuals and

across experimental parameters.

Given that both the modal pattern of CRP-RCCP-MXP and the more general prevalence of

MXP violate both EU and leading non-EU models, in Section 5 we speculate on a possible model

that might be able to explain them. Our results suggest that many individuals gravitate towards

lotteries with more potential upside of winning a non-zero prize while limiting the chance of getting

nothing. We operationalize this idea formally by proposing a simple model of “upside potential”

in which people trade off the total probability of winning something versus the expected winnings

conditional on winning something. Encouragingly, in addition to the modal preference pattern we

set out to capture, this model successfully predicts some of the more nuanced data patterns we

observe. Given the post-hoc nature of our model and its predictions, we do not view this evidence

as formal tests of our theory, but rather as a promising first step that might inform new non-EU

models that better capture the patterns that emerge from our analysis.

In Section 6 we discuss some broader implications of our analysis. In particular, we connect our

results to a recent literature identifying purposeful randomization and the underlying mechanisms

for such phenomena (Agranov and Ortoleva, 2023, 2017; Agranov et al., 2023; Dwenger et al.,

2018; Feldman and Rehbeck, 2022; Cerreia-Vioglio et al., 2015). We also highlight how our work

reinforces the fundamental benefits of identifying patterns of preferences using valuation tasks like

our own relative to binary choice tasks (Bernheim and Sprenger, 2020; McGranaghan et al., 2024;

Carrera et al., 2022). We conclude by calling for the development of new models of risk preferences

alongside the development of a more complete empirical foundation for risky choice.

2 Background and Prior Literature

The prior literature has virtually always studied the CRE and CCE as separate problems, and for

each problem, the literature has focused on a limited set of parameters. In contrast, we study con-

nected CR and CC problems for a broad set of parameters. In this section, we formally demonstrate

the connection between the two problems, highlight the value of investigating connected problems,

and describe in detail the limitations of the prior literature.
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2.1 Connected CR-CC-MX Problems

For fixed prizes H ą M ą 0, consider three binary choice tasks parameterized by the vector pp, rq,

where p, r P p0, 1q:

AB Choice Task: choose Lottery A ” pM, 1q or Lottery B ” pH, pq

AB1 Choice Task: choose Lottery A ” pM, 1q or Lottery B1 ” pH, pr;M, 1 ´ rq

CD Choice Task: choose Lottery C ” pM, rq or Lottery D ” pH, prq

The combination of an AB task and a CD task represents a CR Problem. For this pair, EU

predicts that preferences are invariant to scaling down the probabilities of the non-zero outcomes

by the common ratio r. Thus, an individual should prefer either lotteries A and C or lotteries B

and D. In contrast, the CRE pattern involves choosing lotteries A and D; that is, people are more

risk-tolerant in the CD task than in the AB task.

The combination of an AB1 task and a CD task represents a CC Problem. For this pair, EU

predicts that preferences are invariant to shifting the common consequence of a 1´ r chance of $M
into a 1´ r chance of $0. Thus, an individual should prefer either lotteries A and C or lotteries B1

and D. In contrast, the CCE pattern involves choosing lotteries A and D; that is, people are more

risk-tolerant in the CD task than in the AB1 task.

For a given H and M , each pp, rq generates a connected pair of CR and CC problems. Panel A

of Figure 1 visually illustrates one such connected pair by plotting the five lotteries in a Marschak-

Machina probability simplex for one particular pp, rq. Each problem separately involves comparing

two choice sets on parallel line segments in a Marschak-Machina triangle. Connecting the problems

puts the AB and AB1 choice sets on the same line and then uses the same CD choice for both

problems. Panel A highlights that lottery B1 is a probabilistic mixture of lotteries A and B,

with relative proportions p1 ´ rq and r, and suggests a third relevant comparison of two parallel

choice sets: comparing the AB and AB1 tasks. This comparison reveals people’s attitudes towards

probabilistic mixtures, and thus we refer to the combination of the AB and AB1 choices as a mixture

(MX) problem. EU predicts that people are neutral to mixtures, and thus should prefer lotteries

A and A or lotteries B and B1. In contrast, we refer to the pattern of choosing lotteries A and B1

as a mixture effect (MXE) since people appearing more risk-tolerant in the AB1 problem relative

to the AB problem implies that they like mixtures.

Hence, for a given pp, rq, we refer to the combination of an AB task, an AB1 task, and a CD

task as a connected CR-CC-MX problem.
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Figure 1: Connected Problems and Parameter Coverage in the Prior CR and CC Literature

Panel A: CC, CR, and MX in a MM Triangle
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Note: Panel A depicts a Marschak-Machina (MM) Triangle for lotteries with outcomes H, M , and 0 and associated
probabilities qH , qM , and qL. Paired binary choices A ” pM, 1q vs. B ” pH, pq and C ” pM, rq vs. D ” pH, prq

represent a common ratio (CR) problem. Paired binary choices A vs. B1
” pH, pr;M, 1´ rq and C vs. D represent a

common consequence (CC) problem. Paired binary choices A vs. B and A vs. B1 represent a mixture (MX) problem.
Panel B depicts the experimental parameters pp, rq used in the prior literature and our paired choice experiments.
Red dots denote the CR experiments reported in Blavatskyy et al. (2023). Blue dots denote the CC experiments
reported in Blavatskyy et al. (2022). Black open circles denote paired choice parameters in stage 2 of our study. The
size of each circle reflects the total number of participants who completed a paired choice task with that parameter.

2.2 Why Study Connected Problems?

By studying connected problems, researchers can uncover a more comprehensive picture of indi-

vidual risk preferences than by studying each problem in isolation. As a simple initial illustration,

consider the additional implications of studying connected CR-CC-MX problems for EU. For each

individual problem, EU makes a particular prediction: For instance, for a CR problem, EU predicts

that individuals prefer A and C or B and D. However, for a connected CR-CC-MX problem, EU

makes a stronger prediction across the three choice tasks, specifically requiring either combination

A, A, and C or combination B, B1, and D. More generally, by studying connected CR-CC-MX

problems, we can uncover patterns in how people react to CR manipulations, how people react

to CC manipulations, and how people react to MX manipulations—that is, researchers can study

three characteristics of underlying preferences.

To formalize these preferences, if we assume monotonicity, then for a fixed pp, r,Mq there will

exist three underlying indifference values h˚
AB, h

˚
AB1 , and h˚

CD that satisfy:

• Prefer A over B if and only if H ă h˚
AB,

• Prefer A over B1 if and only if H ă h˚
AB1 , and
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• Prefer C over D if and only if H ă h˚
CD.

A person’s reaction to a CR manipulation is captured by ∆˚
CR ” h˚

AB ´ h˚
CD, and their reaction

to a CC manipulation is captured by ∆˚
CC ” h˚

AB1 ´ h˚
CD. The standard effects suggest that

people are more risk tolerant in the CD choice than in either the AB or AB1 choice, which implies

∆˚
CR ą 0 and ∆˚

CC ą 0. We label these two features of preferences common ratio preference (CRP)

and common consequence preference (CCP). We label ∆˚
CR ă 0 and ∆˚

CC ă 0 as reverse common

ratio preference (RCRP) and reverse common consequence preference (RCCP). A person’s attitude

toward probabilistic mixtures is captured by ∆˚
MX ” h˚

AB ´ h˚
AB1 . If a person likes mixtures, they

will have ∆˚
MX ą 0, which we label a mixture preference (MXP). If they dislike mixtures, they will

have ∆˚
MX ă 0, which we label a reverse mixture preference (RMXP).

With this notation, EU implies ∆˚
CR “ ∆˚

CC “ ∆˚
MX “ 0. Over the years, researchers have

developed various non-EU models, and these models make predictions for the patterns of individual

preferences, ∆˚
CR, ∆

˚
CC , and ∆˚

MX . In Appendix B, we derive these predictions for several leading

non-EU models. In Table 1, we summarize the predictions from each model as a function of the

model’s key parameter, and also highlight the focal range for that parameter (i.e., the range in

which that parameter is typically assumed to lie).7

Table 1 highlights how connected CR-CC-MX problems can be used to assess various models

of non-EU risk preferences in the literature. Indeed, it reveals three important features common

to this set of prominent models. First, each model predicts a CRP and a CCP for the focal range

of its key parameter. This commonality reflects the fact that the CRE and CCE are typically seen

as stylized facts that either motivate non-EU models or serve as a litmus test for those models.

Second, the models differ in their predictions for mixture preferences. However, for the focal range

of each model’s key parameter, the prediction is either mixture neutrality or RMXP, except for the

two variants of prospect theory where the prediction can go either way depending on the specific

pp, rq combination. Third, and perhaps most interestingly, when we also consider cases where the

models’ key parameters lie outside their focal ranges, the set of predicted patterns expands, but it

does not include all possibilities. In particular, none of the models permit the pattern CRP, RCCP,

and MXP that features prominently in our data.

Two final observations will be relevant for linking our data on connected CR-CC-MX problems

to non-EU models. First, except in the few cases noted, the directional predictions in Table 1 hold

for any pp, rq combination—that is, these models predict directional patterns that are invariant to

pp, rq. Second, of the models covered by Table 1, the two prospect theory models have some scope

to expand their predictions by permitting alternative functional forms for the probability weighting

function πpqq. We discuss in Section 5.3 whether that additional flexibility could be used to explain

7While we focus on parameterized models, one could instead frame this discussion in terms of axioms of choice. In
particular, the CRE and the CCE are classic violations of the independence axiom—i.e., it is the independence axiom
that implies ∆˚

CR “ ∆˚
CC “ ∆˚

MX “ 0. Some have suggested replacing the independence axiom with a betweenness
axiom that permits ∆˚

CR and ∆˚
CC to be nonzero but requires that they equal each other and thus that ∆˚

MX “ 0.
Gul’s 1991 model of Disappointment Aversion, among others, falls in this class.
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Table 1: Predictions of Leading Non-EU Models for ∆˚
CR, ∆

˚
CC , and ∆˚

MX

Model and Structure Parameter Range Predictions

Original Prospect Theory
δ P p0.279, 1q: ∆˚

CR ą 0, ∆˚
CC ą 0, ∆˚

MX £ 0
(Kahneman and Tversky, 1979)

with πpqq “ qδ{
“

qδ ` p1 ´ qqδ
‰

1
δ

δ ą 1 ∆˚
CR ă 0, ∆˚

CC ą 0, ∆˚
MX ă 0

UpBq “ πppqvpHq

Cumulative Prospect Theory
δ P p0.279, 1q: ∆˚

CR ą 0, ∆˚
CC ą 0, ∆˚

MX £ 0
(Tversky and Kahneman, 1992)

with πpqq “ qδ{
“

qδ ` p1 ´ qqδ
‰

1
δ

δ ą 1 ∆˚
CR ă 0, ∆˚

CC and ∆˚
MX £ 0

UpBq “ πppqvpHq

Loss Aversion under CPE
Λ P p0, 1q: ∆˚

CR ą 0, ∆˚
CC ą 0, ∆˚

MX ă 0
(Kőszegi and Rabin, 2007)

UpBq “ pupHq ´ pp1 ´ pqΛupHq Λ P p´1, 0q ∆˚
CR ă 0, ∆˚

CC ă 0, ∆˚
MX ą 0

Disappointment Aversion
β P p0, 1q: ∆˚

CR ą 0, ∆˚
CC ą 0, ∆˚

MX ă 0
(Bell, 1985)

UpBq “ pupHq ´ pp1 ´ pqβupHq β P p´1, 0q ∆˚
CR ă 0, ∆˚

CC ă 0, ∆˚
MX ą 0

Disappointment Aversion
β ą 0: ∆˚

CR “ ∆˚
CC ą 0, ∆˚

MX “ 0
(Gul, 1991)

UpBq “
p

1 ` βp1 ´ pq
upHq β P p´1, 0q ∆˚

CR “ ∆˚
CC ă 0, ∆˚

MX “ 0

Cautious Expected Utility (CEU)

not applicable ∆˚
CR “ ∆˚

CC ą 0, ∆˚
MX “ 0(Cerreia-Vioglio et al., 2015)

(see Appendix B.6 for structure)

Simplicity Preferences

not applicable ∆˚
CR ą 0, ∆˚

CC ą 0, ∆˚
MX ă 0(Puri, 2024)

(see Appendix B.7 for structure)

Notes: Table presents predictions of each model for the sign of ∆˚
CR, ∆

˚
CC , and ∆˚

MX ; see Appendix B for formal
derivations. Each of the first five models is a parameterized model. To give a sense of the parametric structure,
the first column provides the utility from lottery B ” pH, pq. For each model, the sign predictions are independent
of the utility for outcomes (vpxq or upxq), and thus depend on the single listed parameter. Focal ranges for a
model’s key parameter are indicated by :, but the table also reports predictions for other ranges where the model
is well-defined. All predictions hold for all pp, rq P p0, 1q

2, except £ indicates cases where the predictions depend
on pp, rq. Note that original prospect theory and cumulative prospect theory differ only for lottery B1 among our
set of five lotteries, and the same applies for Kőszegi-Rabin loss aversion under CPE (Choice-Acclimating Personal
Equilibrium) and Bell disappointment aversion.

the patterns in our data.

2.3 Limitations of the Prior Literature on the CRE and CCE

There is a large prior empirical literature on both the CRE and CCE (and also a smaller empirical

literature on the MXE that we discuss in Section 2.4). To illustrate the limitations of prior empirical

evidence on the CRE and CCE, we reanalyze the prior literature in terms of the pp, rq combinations

that researchers have used. To do so, we merge the data from two recent meta-studies: Blavatskyy
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et al. (2022) identify 143 CR experiments drawn from 39 studies and Blavatskyy et al. (2023)

identify 81 CC experiments drawn from 29 studies. All 224 experiments noted in these meta-

studies rely on paired choices which, as we discuss in Section 2.5, suffer from substantial inferential

problems both when considering each problem in isolation and when considering their connection.

We combine the data from these meta-studies while converting the probabilities into our pp, rq

framework. The resulting dataset yields several insights.

First, the prior literature has virtually always studied the CRE and CCE as separate problems.

Of the prior CR and CC studies covered by the two meta-studies, only 10 contain both CR and CC

experiments. Of these 10, only four collected observations for CR and CC problems at the same

parameters for the same participants, and only two intentionally studied the connection between

the two problems to better understand the nature of risk preferences.8

Second, for each problem, the prior literature has used a limited set of parameters. Panel B of

Figure 1 illustrates the pp, rq configurations used in this literature. The red circles correspond to

prior CR experiments, while the blue circles correspond to prior CC experiments. For each type

of experiment, there is a large mode at the canonical versions of each problem. Of the 143 prior

CR experiments, 48 (34%) used the Kahneman and Tversky (1979) values of pp, rq “ p0.80, 0.25q,

depicted by the large red dot in Panel B. Similarly, of the 81 prior CC experiments, 34 (42%)

used the Allais (1953) values of pp, rq “ p0.91, 0.11q, depicted by the large blue dot in Panel B.

While there is some variation among the others, Panel B reveals that a substantial portion of the

parameter space remains unexplored.

This limited coverage would be of little consequence if the direction of the observed effects were

broadly invariant to parameter choices. Indeed, the leading non-EU models that we summarize in

Table 1 predict that people have both a CRP and a CCP for all pp, rq. However, Blavatskyy et al.

(2022) and Blavatskyy et al. (2023) show that both the CRE and CCE are sensitive to parameter

choices. Specifically, they find that a CRE is more likely to occur in experiments with smaller

r, while the choice of p has no significant impact. Conversely, they find that the RCCE pattern

becomes more likely for smaller p (their specification does not include r).9

In Table 2, we further explore the sensitivity of these effects to the choice of experimental

8Burke et al. (1996) and Loomes and Sugden (1998) have connected CR-CC-MX problems, but it seems incidental.
The focus of Burke et al. is whether the CCE differs for real versus hypothetical incentives; the fact that their study
actually includes a connected CR-CC-MX experiment is not mentioned by the authors. The focus of Loomes and
Sugden is comparing three stochastic specifications of EU; to do so, they collect data on roughly 50 binary choices
that include within them five connected CR-CC-MX problems, however, they do not make any special use of these
connected problems, and they do not discuss the CCE or mixture preferences. Bateman and Munro (2005) and
Chew and Waller (1986) intentionally study connected CR-CC-MX problems. Bateman and Munro studies whether
couples’ joint decision making differs from individual decision making in terms of the CRE, CCE, and mixture
preferences, and they use several connected CR-CC-MX problems to do so. Chew and Waller is the paper that has
a motivation closest to ours, emphasizing how connected CR-CC-MX problems can provide more information about
risk preferences. However, both of these papers’ experiments cover very few parameter configurations.

9Blavatskyy et al. (2022) and Blavatskyy et al. (2023) focus much of their analysis on the effects of other features
of experiments such as real versus hypothetical stakes, the ratio of high to middle outcomes, and whether lotteries
are presented as a probability distributions versus in compound form.
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parameters. We use the following continuous measures as our primary outcome variables:10

CRE ´ RCRE ” xPrpA|ABq ´ xPrpC|CDq

CCE ´ RCCE ” xPrpA|AB1q ´ xPrpC|CDq

In Panel A of Table 2, we conduct OLS regressions using these measures as dependent variables.

We replicate the qualitative findings from Blavatskyy et al. (2022) and Blavatskyy et al. (2023) and

additionally find that CRE and CCE are differentially sensitive to changes in p and r. This result

suggests that what one would learn about each phenomenon and their connection is likely to vary

based on the parameters examined.

In Panel B of Table 2, we divide prior CRE and CCE experiments into two categories. The

first consists of those conducted at the canonical pp, rq values, while the second consists of those

conducted at alternative pp, rq values. We find that a sizable CRE and CCE emerge for the ex-

periments conducted at their respective canonical parameter values. However, we also find that

both effect sizes are significantly smaller in magnitude across all experiments conducted at non-

canonical values. Strikingly, an RCCE emerges on average for CC experiments conducted away

from the canonical pp, rq configuration.

Finally, we observe that most prior studies have not focused on testing whether the CRE and

CCE are robust to the choice of experimental parameters. Indeed, many of those prior studies did

not have the CRE or CCE as their main object of interest. Of the 39 CRE studies identified by

Blavatskyy et al. (2023), 21 (53%) use only one or two parameter configurations, and the average

number of parameter configurations across all studies is less than four. Of the 29 CCE studies

identified by Blavatskyy et al. (2022), 18 (62%) use only one or two parameter configurations, and

the average number of parameter configurations across all studies is less than three. The limited

use of parameters within and across prior studies highlights a need for more scrutiny in establishing

whether CRE and CCE reflect global features of preferences.

2.4 Prior Literature on Mixture Preferences

Separate from the literature on the CRE and the CCE, two distinct strands of work speak to

mixture preferences. The first is a small literature on direct tests of the betweenness axiom. This

literature is reviewed in two key papers: Camerer and Ho (1994) summarize and contribute to the

early literature on betweenness and Blavatskyy (2006) follows up on this. Both papers conclude that

individuals frequently violate betweenness, but the evidence is mixed on the direction of violation,

with some studies concluding more mixture loving and others concluding more mixture aversion.

These tests of betweenness are almost never in the context of connected CR-CC-MX problems.

10We use xPrpX|Y Zq to denote the proportion of the population that chooses option X from the choice set Y Z.
Note that CRE´RCRE is equivalent to the proportion choosing combination AD minus the proportion choosing BC
in a CR problem, and CCE ´RCCE is equivalent to the proportion choosing combination AD minus the proportion
choosing B1C in a CC problem.
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Table 2: Sensitivity of Results to Experimental Parameters in the Prior Literature

Panel A. Sensitivity to Experimental Parameters

(1) (2)

CR Study CC Study

H Probability: p 12.44 50.70

(11.59) (14.01)

Common Ratio: r ´61.14 ´45.16

(8.23) (19.10)

Sample
Blavatskyy

et al. (2023)

Blavatskyy

et al. (2022)

Outcome Mean 19.25 8.64

Observations 143 81

Panel B. Canonical vs. Non-Canonical

(3) (4) (5)

Canonical Other Difference

(i): KT Parameters

CRE ´ RCRE 25.63 15.49 ´10.71

(16.09) (24.80) [´2.87]

Experiments 53 90 143

(ii): Allais Parameters

CCE ´ RCCE 21.37 ´0.57 ´21.94

(18.18) (22.09) [´4.74]

Experiments 34 47 81

Notes: Panel A presents linear regressions that assess the sensitivity of experimental results from CR or CC studies

based on the probability of the high outcome (p) and the common ratio (r). Column (1) presents the results for the

143 experiments reported in Blavatskyy et al. (2023), where the outcome is the net share of participants displaying

a CRE relative to an RCRE, CRE ´ RCRE. Column (2) presents the results for the 81 experiments reported in

Blavatskyy et al. (2022), where the outcome is the net share of participants displaying a CCE relative to an RCCE,

CCE ´ RCCE. Specifications also include the value of the high outcome (H), the relative stakes (M{ppHq), and a

dummy for whether the experiment had real stakes. Standard errors are in parentheses. Panel B presents the average

of these outcomes based on whether the experiments reported in Blavatskyy et al. (2023) and Blavatskyy et al. (2022)

were conducted at the canonical parameters in Kahneman and Tversky (1979) (KT; p “ 0.8, r P r0.2, 0.3s) or Allais

(1953) (p “ 0.9 or 0.91, r “ 0.1 or 0.11), respectively. Standard deviations are in parentheses, and t-statistics are in

brackets.

Second, there is an emerging literature on deliberate randomization (see, for example, Agra-

nov and Ortoleva, 2017; Dwenger et al., 2018; Feldman and Rehbeck, 2022; Agranov et al., 2023;

Agranov and Ortoleva, 2023). These studies present individuals with the same decision problem re-

peated multiple times, either mixed throughout the study or explicitly repeated in a row. Evidence

from these studies suggests that individuals often prefer to generate mixtures through randomiza-

tion across task repetitions. However, this type of design does not allow for the measurement of

aversion to randomization (i.e., RMXP). We discuss in Section 6 how our analysis relates to this

literature.

2.5 Choices versus Valuations

The prior literatures on the CRE, CCE, and MXE suffer from one additional shared limitation:

They have focused almost exclusively on paired binary choice tasks. Comparing behavior across two

binary choice tasks can lead to biased conclusions in the presence of noise. In McGranaghan et al.

(2024), we build on prior work to demonstrate this problem within the context of the CRE, and

we then show how one might avoid this problem by instead comparing behavior across analogous

valuation tasks.

Motivated by the McGranaghan et al. (2024) development, our primary analysis in this paper
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will focus on three valuation tasks:

AB Valuation Task: state an hAB ě M such that pM, 1q „ phAB, pq

AB1 Valuation Task: state an hAB1 ě M such that pM, 1q „ phAB1 , pr;M, 1 ´ rq

CD Valuation Task: state an hCD ě M such that pM, rq „ phCD, prq.

To see how such valuation tasks might yield unbiased conclusions, consider a person who reports

valuations with noise. Specifically, for a fixed pp, r,Mq, the person has underlying indifference values

h˚
AB, h

˚
AB1 , and h˚

CD as defined in Section 2.2, but the person reports valuations hAB “ h˚
AB `εAB,

hAB1 “ h˚
AB1 ` εAB1 , and hCD “ h˚

CD ` εCD, where εAB, εAB1 , and εCD are random variables that

reflect noise. The person’s empirically measured preferences will then be

∆CR ” hAB ´ hCD “ ∆˚
CR ` εAB ´ εCD

∆CC ” hAB1 ´ hCD “ ∆˚
CC ` εAB1 ´ εCD

∆MX ” hAB ´ hAB1 “ ∆˚
MX ` εAB ´ εAB1 .

As long as ErεABs “ ErεAB1s “ ErεCDs “ 0, ∆CR, ∆CC , and ∆MX are unbiased measures of the

three empirical objects of interest ∆˚
CR, ∆

˚
CC , and ∆˚

MX .11

In contrast to comparing behavior across valuation tasks, comparing behavior across binary

choice tasks can lead to biased inference. To illustrate, suppose noise operates in the same way

for a choice task as it does for the analogous valuation task. Specifically, for a fixed pp, r,Mq,

the person has effective indifference values hAB, hAB1 , and hCD that result from their underlying

indifference values plus noise. In a binary choice task, the person chooses the safer option when

the specific payment value H offered in the binary choice task is smaller than the relevant effective

indifference value. For example, in an AB task, the person chooses A over B when H ă hAB, which

can be rearranged to ´εAB ă h˚
AB ´H. Note that h˚

AB ´H represents the distance to indifference

between the underlying indifference value h˚
AB and the offered H. Intuitively, the person will choose

the safer option when the relevant distance to indifference is sufficiently large relative to a realized

shock.

Now consider the implications for comparing behavior across two binary choice tasks. For

example, for a CR problem, this formulation implies PrpA|ABq “ Prp´εAB ă h˚
AB ´ Hq and

PrpC|CDq “ Prp´εCD ă h˚
CD ´ Hq.12 Even if there is no underlying CRP and thus h˚

AB “ h˚
CD,

ErεABs “ ErεCDs “ 0 is not enough to guarantee that CRE ´RCRE “ 0. For paired choice tasks

to deliver an unbiased test of the CRE, the distributions of εAB and εCD must be the same. Suppose

11In McGranaghan et al. (2024), we also demonstrate that for some formulations of non-mean-zero noise—in
particular, noise expressed in terms of utility—one can still test the null of ∆˚

CR “ 0 using a sign test. In Appendix
C.1, we develop an analogous argument within the context of this paper, and we conduct both means and sign tests
in our analysis in Section 4.

12We use PrpA|ABq to denote the theoretical prediction for the observed xPrpA|ABq.

13



instead that there is differential mean-zero noise, and in particular that the noise has a bigger impact

in the CD choice than in the AB choice. Then, even when h˚
AB “ h˚

CD ” h˚, a positive distance to

indifference (h˚ ´ H ą 0) implies we would observe a CRE (CRE ´ RCRE ą 0), while a negative

distance to indifference (h˚ ´H ă 0) implies we would observe an RCRE (CRE ´RCRE ă 0). In

other words, our conclusion would be biased, and moreover, the extent of the bias depends on the

experimenter’s choice of the experimental payment value H.

In McGranaghan et al. (2024), we formalize this argument in more detail in the context of CR

problems and then run experiments that suggest there is indeed a differential noise problem in

the direction described in the prior paragraph. In Appendix C.2, we provide the analogous formal

argument in the context of the three tasks that constitute a connected CR-CC-MX problem, and

then illustrate how the potential for misleading conclusions is even greater when attempting to

identify preference patterns by comparing behavior across three binary choices.

To obtain robust inference, our primary analysis will focus on identifying patterns of ∆˚
CR,

∆˚
CC , and ∆˚

MX using valuation tasks. However, our experiment will also conduct binary choice

tasks that are linked to the valuation tasks. For these choice tasks, we intentionally select values

for the payment value H based on pilot data to generate data with a roughly equal number of

positive and negative distances to indifference and approximate indifference on average. We do so

for two reasons. First, some researchers have argued that binary choice tasks are more reliable than

valuations for eliciting preferences due to their simplicity and transparency (e.g., Brown and Healy,

2018 and Freeman et al., 2019). By collecting data from linked binary choice tasks, we can assess

the relationship between valuations and choices, and whether the two types of data yield the same

messages when appropriately accounting for the potential biases in choice-based inference. Second,

these choice data will allow us to directly assess the direction and extent of any differential noise

problem within the context of CC and MX problems, which the prior literature has not examined.

A final benefit of valuation tasks is that they provide magnitudes that allow for a direct interpre-

tation. Specifically, with valuation tasks, we observe ∆CR, ∆CC , and ∆MX . These represent direct

measures of the magnitudes of their corresponding underlying preferences ∆˚
CR, ∆

˚
CC , and ∆˚

MX .

In contrast, with binary choice tasks, we observe xPrpA|ABq ´ xPrpC|CDq, xPrpA|AB1q ´ xPrpC|CDq,

and xPrpA|ABq ´ xPrpA|AB1q. Even if the sign of these quantities were unbiased, the magnitudes

have no clear interpretation as they represent a combination of the magnitude of the underlying

∆˚
CR, ∆

˚
CC , and ∆˚

MX and the magnitude of the differential noise.

3 Experimental Methodology

We study connected CR-CC-MX problems using both paired valuation tasks and paired choice

tasks at 20 different pp, rq combinations.13 We consider four possible values of p P t0.3, 0.5, 0.8, 0.9u

13We conducted the experiment in August 2022 and preregistered it in the AEA RCT Registry under the ID
AEARCTR-0009974 prior to data collection.
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and five possible values of r P t0.1, 0.2, 0.3, 0.5, 0.8u. These values cover a wide range of pp, rq con-

figurations while still including some of the most popular parameter choices in the prior literature.

The open circles in Panel B of Figure 1 plot our choice of pp, rq combinations.

Figure 2 provides an overview of the experiment timeline. Our experiment consists of two

stages. In stage 1, we randomly assign each participant to four of our 20 pp, rq combinations, and

they complete a total of 20 valuation tasks. Each valuation task fixes M and uses a multiple price

list to elicit the value of H that makes the participant indifferent between two lotteries. In stage

2, the participant completes 24 binary choice tasks for the same four pp, rq combinations as in

stage 1. Participants complete all 20 valuations before proceeding to the 24 binary choices, and we

randomize the order of questions within each stage.

Stage 1

20 Valuation Tasks

pp1, r1q pp2, r2q pp3, r3qpp4, r4q

Stage 2

24 Binary Choice Tasks

pp1, r1q pp2, r2q pp3, r3q pp4, r4q

H1
1 H2

1 H3
1 H1

2 H2
2 H3

2 H1
3 H2

3 H3
3 H1

4 H2
4 H3

4

hAB valuation (stage 1) or AB choice for given H (stage 2)

hAB1 valuation (stage 1) or AB1 choice for given H (stage 2)

hCD valuation (stage 1) or CD choice for given H (stage 2)

Comprehension Check

Figure 2: Experiment Timeline

3.1 Stage 1: Valuation Tasks

In stage 1, each participant completes 20 valuation tasks across four randomly drawn combinations

of pp, rq. We draw the values of p without replacement so that each participant sees each possible

value of p in combination with at least one r value. Conversely, we draw r values with replacement

so that a participant might face the same r across multiple values of p.14

For each pp, rq combination, we elicit the following indifference points:

hAB such that : pM, 1q „ phAB, pq

hAB1 such that : pM, 1q „ phAB1 , pr;M, 1 ´ rq

hCD such that : pM, rq „ phCD, prq

For each pp, rq combination, we fix M “ $pp ¨ 30q and elicit the relevant valuations using a

14We draw values of p without replacement to avoid additional instances of multiple elicitations of the same task
since the AB task does not depend on r.
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multiple price list.15 The left-hand option in each price list remains fixed at either lottery pM, 1q

or lottery pM, rq. The right-hand option is either lottery pH, pq, pH, pr;M, 1 ´ rq or pH, prq with

H varying in $1 increments from $pp ¨ 30q to $pp ¨ 30` 50q. For instance, for p “ 0.3, we fix M “ $9

and vary H from $9 to $59. We take the average value of H at the switching rows as our measure

of the indifference valuation.16

For each price list, we enforce a unique switching point. When participants click a row in the

left panel, it highlights the left-hand option in that row and all rows above. Analogously, when

they click a row in the right panel, it highlights the right-hand option in that row and all the rows

below. They can adjust their choices as much as they want before submitting their final choices for

that valuation task. Appendix Figures F.1 to F.3 provide example screenshots of all three variants

of the valuation task.

For two randomly drawn pp, rq combinations that a participant sees, we elicit each valuation

twice, generating observations thAB, h
1
AB, hAB1 , h1

AB1 , hCD, h
1
CDu. For the remaining two pp, rq com-

binations, we only elicit the CD valuation twice, generating observations thAB, hAB1 , hCD, h
1
CDu.17

We discuss the purpose of collecting multiple elicitations of the same valuation in Section 4. In

total, participants complete 20 valuation tasks: six valuations each for two pp, rq combinations and

four valuations each for the remaining two pp, rq combinations. We randomize the order of valuation

tasks subject to the constraint that multiple elicitations of the same valuation are separated from

each other by at least three other valuation tasks.

3.2 Stage 2: Paired Choice Tasks

In stage 2, each participant completes 24 binary choices across the same four pp, rq combinations

they saw in stage 1. These 24 binary choices represent 12 paired choice tasks, three for each pp, rq

combination: a CR paired choice task that involves an AB choice and a CD choice, a CC paired

choice task that involves an AB1 choice and a CD choice, and an MX paired choice task that

involves an AB choice and an AB1 choice. Appendix Figures F.4 to F.6 present examples of each

type of binary choice task.

Each binary choice that a participant sees in stage 2 is akin to a single isolated “row” from

one of the price lists they saw in stage 1. Specifically, for each pp, rq combination, we again fix

M “ $pp ¨ 30q. Then, for each of the three types of paired choice tasks, we draw a random value of

H from the relevant row in Table 3 without replacement. Hence, for a specific pp, rq combination,

15We set M in this way for practical reasons. We did not want M to be too large when p “ 0.3 to avoid very large
H values at indifference. We also did not want M to be too small when p “ 0.9 to avoid being unable to detect
preference variations given our $1 increments in the price list. Our approach means that a risk neutral person should
choose H “ $30 for all price lists.

16In prior work, we also implement m-valuation tasks in which we hold H fixed and elicit the M that makes
participants indifferent between two lotteries (McGranaghan et al., 2024). For AB1 valuations, varying M would lead
to changes in both columns of the price list, which adds a layer of complexity to the valuation process. To ensure
that our valuations are as comparable as possible, we focus on h-valuation tasks in this paper.

17For each participant and pp, rq pair, we randomly label one of the two valuations hXY and label the other h1
XY

for XY P
␣

AB,AB1, CD
(

. In other words, the 1 is not indicative of the order in which the valuations were elicited.
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we conduct three paired choice tasks (CR, CC, or MX) with a different value of H for each pair

(but with the same H for both choices within a given pair). We randomize the order in which these

choices appear, with no restrictions on the order. The values ofH in Table 3 were pre-specified based

on pilot data to be values where: i) the distance to indifference ranges from positive to negative

across H values, and (ii) the distances to indifference are expected to be roughly balanced. Thus,

the design permits exploration of inference problems of the paired-choice paradigm discussed in

Section 2.5.

Table 3: Stage 2 H Parameter Values by p

(1) (2) (3) (4) (5) (6)

p “ 0.9 31 36 41 46 51 56

p “ 0.8 29 34 39 44 49 54

p “ 0.5 28 33 38 43 48 53

p “ 0.3 27 32 37 42 47 52

Notes: Table presents values of H used in stage-2 for each p. For each pp, rq that a participant saw, they are
presented with three paired choice tasks (one CR, one CC, and one MX); we randomly selected three of the six
H values for the relevant p, and assigned one to each of these paired choice task.

It is interesting to note the scale of our stage 2 paired choice tasks relative to the prior CR and

CC literature. We can think of stage 2 as conducting many paired choice “experiments,” where one

experiment consists of responses from multiple participants for a fixed set of parameters pp, r,Hq.

With 20 pp, rq combinations and six values of H for each, we effectively run 120 CR experiments,

120 CC experiments, and 120 MX experiments, with a total of 8,408 observations for each type of

experiment. In the two meta-studies discussed in Section 2.3, there are 143 CR experiments with

14,794 total observations and 81 CC experiments with 8,947 observations.

3.3 Additional Design Details

Before beginning stage 1, participants complete an unincentivized attention check and a quiz about

the payment mechanism. After completing stage 2, participants complete two incentivized compre-

hension checks to gauge their understanding of the multiple price list format and the binary choice

tasks. The first comprehension check tests whether individuals can correctly fill out a price list

given a specified indifference value. The second comprehension check tests whether participants can

correctly answer a binary choice question when given another person’s responses to a multiple price

list. Appendix Figures F.7 and F.8 provide example screenshots of these comprehension checks.18

Finally, to break up the tasks and reduce fatigue, we present participants with an unincentivized

visual puzzle after every fifth question in both experiment stages. Appendix Figure F.9 provides

an example of one of these puzzles.

18For the first comprehension check, 85 percent of participants answer correctly, and for the second, 79 percent
answer correctly. See Appendix Table A.1. The qualitative patterns in Figure 3 are unchanged if we limit the sample
to those who pass both comprehension checks.

17



3.4 Recruiting

We recruited 2,102 participants through Prolific who had at least a high school education, were

between the ages of 18 and 31, were living in the United States or Western Europe, had a minimum

Prolific approval rating of 99 percent, were fluent in English, and had completed 50 to 1,000

previous Prolific submissions. We focus on this group of participants to approximate the typical

undergraduate sample recruited in prior CC and CR studies. We also recruited a gender-balanced

sample with an even split of male and female participants. Appendix Table A.1 presents summary

statistics for our sample.

We paid each participant a fixed $5 fee for completing the experiment. In addition, we ran-

domly selected one in five participants to receive a bonus based on their responses. Specifically, we

randomly chose one of their 46 decisions (20 valuations, 24 choices, and two incentivized compre-

hension checks) to be the decision that counts. If the decision that counts was a valuation task,

then we randomly selected one row of the price list and paid the participant based on the option

they selected. If the decision that counts was a binary choice task, then we paid the participant

based on the option they selected. If the decision that counts was a comprehension-check question,

then we paid the participant $5 if they answered correctly. The average completion time was 24

minutes and 27 seconds, and the average bonus payment for selected participants was $15.76.

4 Results

Our main analysis uses the AB, AB1, and CD valuations collected in stage 1 of our experiment.

As described in Section 3.1, we collect some valuations twice and randomly label them hXY and

h1
XY for XY P tAB,AB1, CDu.19 We collect multiple elicitations of individual valuations for three

main reasons.

First, we use the multiple elicitations for an initial assessment of our stage 1 data. Specifically,

we examine the correlations between the two elicitations of the same valuation. For example, we

compute the correlation between hCD and h1
CD for a particular pp, rq combination. Appendix Table

A.3 reports these correlations for each valuation by pp, rq. All correlations are positive, ranging

from 0.254 to 0.696. These strong correlations suggest that our valuation data capture meaningful

information about the underlying preferences of interest.

Second, we need multiple elicitations of individual valuations to construct independent measures

of our three main objects of study. Specifically, we define the following measures:

∆CR ” hAB ´ hCD, a (noisy) measure of an individual’s CRP, ∆˚
CR,

∆CC ” hAB1 ´ h1
CD, a (noisy) measure of an individual’s CCP, ∆˚

CC , and

∆MX ” h1
AB ´ h1

AB1 , a (noisy) measure of an individual’s MXP, ∆˚
MX .

19Appendix Table A.2 reports the means for all six valuations phAB , h
1
AB , hAB1 , h1

AB1 , hCD, h1
CDq for each pp, rq

combination.
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If we had only a single elicitation for each valuation, then measurement error in the valuations

would create mechanical correlations between ∆CR, ∆CC , and ∆MX . For instance, if we use

the same measure hCD to construct both ∆CR and ∆CC , then measurement error in hCD would

create a mechanical positive correlation between ∆CR and ∆CC . Our use of multiple elicitations

of individual valuations avoids this problem.

Third, we use the multiple elicitations of the same object to disentangle noise from preferences,

which we describe in detail in Section 4.2.

4.1 Main Results: ∆CR, ∆CC, and ∆MX

Our main results focus on ∆CR, ∆CC , and ∆MX . We first analyze mean preferences across all

participants. Figure 3 presents the mean values of ∆CR, ∆CC , and ∆MX by p separately for each

r. Recall that EU predicts all of these values to be zero, while many non-EU models predict a

systematic ∆CR ą 0 and ∆CC ą 0. Panels A and B characterize the average CRP and CCP in

our data, and illustrate that CRP and CCP are differentially sensitive to parameter changes and

do not seem to be global phenomena. Values of ∆CR are largely invariant to changes in p but are

sharply decreasing in r, leading to ∆CR « 0 at higher r values. In contrast, values of ∆CC are

largely invariant to changes in r but are sharply increasing in p, with ∆CC ă 0 at lower p values.

Panel C reveals that our participants consistently prefer mixtures, sometimes quite strongly. The

average ∆MX is positive for most parameters and becomes substantially larger at lower values for

p and r.

Looking across the three panels in Figure 3, these results yield variable patterns of preferences

with two striking regularities. On one hand, near the canonical parameterizations for CR and CC

problems (i.e., at p “ 0.8 or 0.9 and r “ 0.1, 0.2, or 0.3), we find both ∆CR ą 0 and ∆CC ą 0.

Thus, CRP and CCP emerge at canonical parameter values, consistent with the findings from the

paired-choice paradigm. In addition, at the canonical parameter values, ∆MX tends towards zero

such that the generally positive attitude towards mixtures observed in Panel C would be missed by

focusing exclusively on the canonical parameterizations. On the other hand, for small p and small

r, we find a robust pattern of ∆CR ą 0, ∆CC ă 0, and ∆MX ą 0. This pattern contrasts sharply

with the predictions of leading non-EU models in Table 1.

Tables 4 and 5 provide information on the statistical significance of the patterns in Figure 3.

Table 4 presents the magnitudes of all 60 points in Figure 3 along with whether each is statistically

different from zero using both mean and sign tests.20,21 The table highlights that quantities in

20Appendix Table A.4 provides all means and sign tests with supporting details.
21In McGranaghan et al. (2024), we similarly tested for the existence of CRP using paired valuation tasks. While

most of McGranaghan et al. (2024) presents results based on choose-m tasks in which participants report the middle
value that makes them indifferent between Options A and B and C and D respectively, we also collected choose-h
tasks for validation and robustness which we can directly compare to the measures in this paper. McGranaghan et al.
(2024) explored a smaller range of r (r P t0.2, 0.4, 0.6u compared to r P t0.1, 0.2, 0.3, 0.5, 0.8u in this paper) and also
captures some lower values of p (p P t0.1, 0.2, 0.5, 0.8, 0.9u compared to p P t0.3, 0.5, 0.8, 0.9u in this paper). In both
cases, we find no evidence of a systematic CRP as the direction and magnitude of the effects depend on experimental
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Figure 3: Mean ∆CR, ∆CC , and ∆MX by p for each r
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Notes: Figure depicts mean values of ∆CR “ hAB ´ hCD, ∆CC “ hAB1 ´ h1
CD, and ∆MX “ h1

AB ´ h1
AB1 . Panels

A and B aggregate over all 8,408 observations, with each point corresponding to roughly 420 observations. Panel C

aggregates over the 4,204 observations for which we elicit h1
AB and h1

AB1 , with each point corresponding to roughly

420 observations. Expected utility predicts ∆ “ 0 in all three panels.

excess of roughly 1.5 in absolute value in Figure 3 are statistically different from zero. Table 5

regresses each measure (∆CR, ∆CC , and ∆MX) on p and r, and confirms the patterns in Figure 3.

Specifically, ∆CR is larger for smaller r and is roughly independent of p, ∆CC is larger for larger p

and is roughly independent of r, and ∆MX is larger for both smaller r and smaller p.22

Whereas Figure 3 and Tables 4 and 5 characterize mean responses, it is also important to inves-

tigate preferences at the individual level. To relate our data to the directional model predictions

in Table 1, we focus on participants’ directional responses; for example, whether a person exhibits

∆CR ą 0, ∆CR “ 0 (denoted �CR), or ∆CR ă 0 for CR problems. With three possible directional

responses for each of the three measures of interest, there are 27 combinations. Figure 4 presents a

histogram across these 27 combinations using the 4,204 observations for which we have independent

measures of ∆CR, ∆CC , and ∆MX . Note that the variation in Figure 4 is both across participants

and within participants across pp, rq.

Figure 4 reveals that the mean preferences in Figure 3 and Tables 4 and 5 mask substantial

heterogeneity. Response patterns that correspond to the standard behavioral hypothesis of people

having both ∆CR ą 0 and ∆CC ą 0 are highlighted in green. Such observations constitute only

a small fraction of the observed patterns (21.0 percent) and are no more frequent than those that

exhibit the combination of ∆CR ą 0 and ∆CC ă 0 (21.3 percent). Indeed, as foreshadowed by

Figure 3, the most frequently observed single response pattern is the combination of ∆CR ą 0,

parameter choices, especially the choice of r. Relative to McGranaghan et al. (2024), the set of parameters considered
in this paper yields slightly more cases in which preferences are in the direction of CRP, particularly for cases in
which r “ 0.1. This underscores the role low values of r play in generating evidence of CRP, which many non-EU
models implicitly assume is a global phenomenon.

22An alternative though less direct measure of MXP is ∆CR ´ ∆CC . Tables 4 and 5 also provide results for this
measure, which are qualitatively and quantitatively similar to the results for our direct measure ∆MX .
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Table 4: Mean ∆CR, ∆CC , and ∆MX by p and r

Panel A: Mean ∆CR

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 5.68˚,: 6.49˚,: 6.42˚,: 6.00˚,:

r “ 0.2 3.48˚,: 4.57˚,: 3.04˚,: 4.22˚,:

r “ 0.3 1.99˚,: 4.10˚,: 6.26˚,: 2.23˚,:

r “ 0.5 ´0.85 ´0.23 0.93 1.16

r “ 0.8 0.61 ´0.63 ´1.92˚,: 0.45

Panel B: Mean ∆CC

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 ´10.60˚,: ´4.81˚,: 1.66 1.39

r “ 0.2 ´5.72˚,: ´3.65˚,: ´0.10 3.36˚,:

r “ 0.3 ´5.11˚,: ´2.70˚,: 2.93˚ 2.52˚

r “ 0.5 ´7.83˚,: ´5.22˚,: ´0.11 1.89˚

r “ 0.8 ´2.35˚,: ´0.80: ´1.31: 1.46˚

Panel C: Mean ∆CR ´ ∆CC

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 16.28˚,: 11.30˚,: 4.76˚,: 4.61˚,:

r “ 0.2 9.19˚,: 8.22˚,: 3.14˚,: 0.86:

r “ 0.3 7.10˚,: 6.80˚,: 3.32˚,: ´0.29;

r “ 0.5 6.98˚,: 4.99˚,: 1.04 ´0.73

r “ 0.8 2.96˚,: 0.17 ´0.62 ´1.01

Panel D: Mean ∆MX

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 11.32˚,: 9.15˚,: 5.36˚,: 3.98˚,:

r “ 0.2 10.94˚,: 8.74˚,: 3.19˚,: 0.54

r “ 0.3 7.74˚,: 4.85˚,: 1.87˚,: ´1.26

r “ 0.5 6.16˚,: 3.45˚,: 2.66˚,: 1.76:

r “ 0.8 1.67˚,: 1.82˚,: ´1.34 ´0.50

Notes: Table presents mean values along with corresponding hypothesis tests for ∆CR “ hAB ´ hDE , ∆CC “

hAB1 ´h1
DE , ∆CR´∆CC , and ∆MX “ h1

AB ´h1
AB1 . Panels A, B, and C aggregate data across all 8,408 observations,

with each entry corresponding to roughly 420 observations. Panel D aggregates across the 4,204 observations for

which we elicit h1
AB and h1

AB1 , with each entry corresponding to roughly 210 observations. Expected utility null

hypothesis corresponds to zero mean or zero sign difference. ˚ denotes that the value is significantly different from

zero at the 5 percent level using a means test. : denotes a significant deviation in the direction of the reported sign

at the 5 percent level using a sign test.

Table 5: Predicting the Prevalence of CR, CC, and MX by p and r

(1) (2) (3) (4)
Outcome: ∆CR ∆CC ∆CR ´ ∆CC ∆MX

Probability (p) 1.00 13.96 ´12.96 ´10.95
(0.67) (0.71) (0.92) (0.95)

Common Ratio (r) ´9.16 1.82 ´10.97 ´9.24
(0.66) (0.74) (0.84) (0.86)

Outcome Mean 2.74 ´1.72 4.46 4.07
Observations 8,408 8,408 8,408 4,204

Notes: Table presents ordinary least squares regressions of ∆CR “ hAB ´ hDE , ∆CC “ hAB1 ´ h1
DE , ∆CR ´ ∆CC , and

∆MX “ h1
AB ´ h1

AB1 on experimental parameters pp, rq. Columns (1)-(3) use all 8,408 observations from 2,102 participants,
while column (4) uses 4,204 observations from 2,102 participants. Specification also includes a constant that is not reported.
Standard errors clustered at individual level in parentheses.

∆CC ă 0, and ∆MX ą 0, though even this modal pattern accounts for only 14.6 percent of

observations.23

23Appendix Figures A.1 to A.3 depict the distributions of responses for various pp, rq subsets. Near the canonical
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Figure 4: Histogram of Response Patterns
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . The histogram covers the 4,204 observations for which we elicit h1
AB

and h1
AB1 , with each participant contributing two observations. Each variable can have three potential signs, leading

to 27 possible patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0,
and �CR to ∆CR “ 0). Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0, a frequent prediction
of leading behavioral models (see Table 1).

To the extent that some of the variability in responses reflects heterogeneous preferences, it

will be important for models of risk preferences to predict this variability. Before reaching that

conclusion, we must assess the extent to which the variability in responses reflects heterogeneous

preferences versus noise.

4.2 Decomposing Variability in Responses into Preference and Noise

In this section, we estimate the population distribution of underlying preferences and the magnitude

of decision noise. We then use these estimates for two purposes. First, we assess how much of the

variability in our data is due to heterogeneity in preferences versus noise. Second, we derive what

the distribution of response patterns from Figure 4 would look like in the absence of decision noise.

To disentangle noise from preferences, we leverage the fact that we collect multiple elicitations

parameterizations (p “ 0.8 or 0.9 and r “ 0.1, 0.2, or 0.3), the combination ∆CR ą 0 and ∆CC ą 0 is indeed more
prevalent (28.9 percent). Nonetheless, there is still substantial variability, and the combination ∆CR ą 0, ∆CC ă 0,
and ∆MX ą 0 still accounts for 13.8 percent of observations. Alternatively, for parametrizations where Figure 3
suggests the ∆CR ą 0, ∆CC ă 0, and ∆MX ą 0 combination should be strongest (p “ 0.3 or 0.5 and r “ 0.1,
0.2, or 0.3), that combination now constitutes 21.4 percent. However, there is substantial variability at all problem
parameters.
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for each valuation. Intuitively, if the noise is independent across the two elicitations, then the

covariance between them is solely determined by the heterogeneity in preferences. We provide a

brief overview of our approach here, while Appendix D provides a more complete description of our

decomposition.

We begin with some notation for the population distribution of the underlying indifference

values for a fixed pp, r,Mq. We define the expectation Eph˚
AB, h

˚
AB1 , h˚

CDq ” pµ˚
AB, µ

˚
AB1 , µ˚

CDq, and

we define the variance-covariance matrix

V

¨

˚

˚

˝

h˚
AB

h˚
AB1

h˚
CD

˛

‹

‹

‚

”

¨

˚

˚

˝

θ2AB θAB,AB1 θAB,CD

θAB,AB1 θ2AB1 θAB1,CD

θAB,CD θAB1,CD θ2CD

˛

‹

‹

‚

. (1)

For XY P tAB,AB1, CDu, we assume an individual’s two elicited XY valuations are

hXY “ h˚
XY ` εXY and h1

XY “ h˚
XY ` ε1

XY ,

where EpεXY q “ Epε1
XY q “ 0, varpεXY q “ varpε1

XY q “ σ2
XY , and εXY and ε1

XY are independent

of each other, underlying preferences, and all other noise draws.

Under these assumptions, we can derive theoretical predictions for the empirical moments:

varphXY q “ θ2XY ` σ2
XY ,

covphXY , h
1
XY q “ θ2XY , and

covphXY , hWZq “ θXY,WZ .

The first equation highlights that if we had only a single elicitation for the XY valuation, then

we would be unable to decompose its variance into the separate preference and noise components.

The second equation illustrates our central intuition: If the noise draws for the two elicitations of

the XY valuation are independent, then the covariance between those two elicitations identifies the

variance of the preference heterogeneity.

Given this formulation, there are twelve model parameters to estimate for each pp, rq: three

µ˚
XY terms capturing the population average preference; three θ2XY terms capturing preference het-

erogeneity; three θXY,WZ terms capturing the covariance between preferences; and three σ2
XY terms

representation the impact of noise. We derive estimates of these terms by calculating the relevant

sample moments. For example, θ̂2AB “ covsphAB, h
1
ABq and σ̂2

AB “ varsphABq ´ covsphAB, h
1
ABq,

where covs and vars denote a sample covariance or variance. Appendix Table A.5 reports our

estimates of these 12 terms for each pp, rq combination.24

Given these estimates, we can assess how much of the variability in our data is due to hetero-

24Appendix D.5 describes a more sophisticated estimation using MLE. Because that approach requires additional
distributional and implementation assumptions, we prefer the approach described in the text. However, the MLE
approach yields virtually identical conclusions.
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geneity in preferences versus noise. Consider first the variability in the indifference values hAB,

hAB1 , and hCD. The last three columns of Appendix Table A.5 report the proportion of the variabil-

ity for each indifference value that is due to preferences; that is, the ratio yvarph˚
XY q{yvarphXY q “

θ̂2XY {pθ̂2XY ` σ̂2
XY q for each XY P tAB,AB1, CDu. Averaging across the 20 pp, rq combinations,

preference heterogeneity accounts for 61 percent of the variation in hAB, 58 percent of the variation

in hAB1 , and 48 percent of the variation in hCD.

Next we consider variability in the preference measures ∆CR, ∆CC , and ∆MX . For ∆CR ”

hAB ´ hCD, it is straightforward to derive that

varp∆CRq “ varp∆˚
CRq ` σ2

AB ` σ2
CD, and

varp∆˚
CRq “ θ2AB ` θ2CD ´ 2θAB,CD,

along with the analogous expressions for ∆CC and ∆MX . Appendix Table A.6 uses the estimates

in Appendix Table A.5 to calculate these six variance terms for each pp, rq combination.25 The last

three columns of Appendix Table A.6 report the proportion of the variability for each preference

measure that is due to preferences; that is, the ratio yvarp∆˚
Zq{yvarp∆Zq for each Z P tCR,CC,MXu.

Averaging across the 20 pp, rq combinations, preference heterogeneity accounts for 31 percent of

the variation in ∆CR, 31 percent of the variation in ∆CC , and 25 percent of the variation in ∆MX .

We next construct what the distribution of response patterns from Figure 4 would look like in

the absence of decision noise. To do so, we make the additional assumption that the underlying

preferences ph˚
AB, h

˚
AB1 , h˚

CDq have a joint normal distribution. For each pp, rq combination, we use

the parameter estimates in Appendix Table A.5 to generate 100,000 draws from a joint normal

distribution for ph˚
AB, h

˚
AB1 , h˚

CDq. We then convert each draw into a ∆˚
CR, ∆

˚
CC , and ∆˚

MX .26 This

approach allows us to isolate the preference patterns underlying the response patterns depicted in

Figure 4.

Figure 5 reproduces the distribution of response patterns in Figure 4 but adds black dots to

denote the distribution of preference patterns that we simulate using the approach described above.

Note that any pattern that implies an intransitivity in the underlying preferences ph˚
AB, h

˚
AB1 , h˚

CDq

cannot emerge from this simulation.27 Of the 27 possible response patterns, 14 of them imply an

intransitivity. Neither our decomposed preferences nor any transitive theory of preferences would

be able to accommodate such patterns, which are marked in gray in Figure 5.28

25When using this approach, nothing guarantees that the calculated varp∆˚
Zq ą 0, and indeed there is one instance

where this problem arises (for ∆MX when pp, rq “ p0.3, 0.5q). We ignore this case and focus on the other 59 cases.
26Specifically, we convert each h˚ draw into the midpoint of its two closest integers (e.g., any draw strictly between

$2 and $3 is converted to $2.50). We then use these adjusted h˚ terms to generate the ∆˚ terms. Note that this
approach permits simulations of the ∆˚ terms to be zero. See Appendix D.3 for complete details.

27For example, pattern RCRP-CCP-MXP would require h˚
CD ą h˚

AB , h
˚
AB1 ą h˚

CD, and h˚
AB ą h˚

AB1 , and this
combination could never emerge from a single realization of ph˚

AB , h
˚
AB1 , h

˚
CDq.

28Such patterns are empirically possible in our experiment given that we use independent noisy measures of the
three ∆ terms. Moreover, the frequencies of such patterns may give an indication of the prevalence of noise relative to
preferences in our data. In the extreme, if all patterns were equally likely, the majority (i.e., 14/27 = 52%) would have
inconsistencies. Instead, we observe that intransitive patterns represent 26% of overall response patterns, averaging
1.9% of observations per pattern and exceeding 3% in only two cases.
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Of the remaining 13 possible preference patterns, six are “strict” in the sense that they do not

include a ∆˚
CR “ 0, ∆˚

CC “ 0, or ∆˚
MX “ 0, while the other seven are “weak” in the sense that

they include a null preference. Our simulation exercise permits both strict and weak patterns, and

indeed, all 13 patterns have a positive share of simulated preferences. Figure 5 shows that some

patterns arise more frequently in preferences than in the raw responses while the reverse is true

for others. The four most prominent strict patterns (marked P1, P2, P3, P4, and indicated in

blue) account for approximately 73 percent of preference patterns, but only 44 percent of response

patterns. Our decomposition and simulation exercise highlights that these patterns would be even

more frequent in the absence of decision noise. The three most prominent weak patterns (marked

P12, P23, and P34, to denote the strict preference patterns that they lie between and indicated

in light blue) account for eight percent of preferences and 11 percent of observations. According

to our decomposition, these patterns would be slightly less frequent in the absence of decision

noise. Together, the seven marked patterns account for 81 percent of preferences and 55 percent

of responses, representing the majority of both. As we will see, these marked patterns, many of

which are inconsistent with the prominent non-EU theories in Table 1, emerge as the seven patterns

predicted by our model of upside potential presented in Section 5.

4.3 Choices versus Valuations

Some researchers have argued that binary choice tasks are more reliable than valuations for eliciting

preferences due to their simplicity and transparency (e.g., Brown and Healy, 2018 and Freeman

et al., 2019). In this section, we use our stage 2 binary choice data to address this critique, and we

further show that, in fact, our stage 2 choice data yield much the same conclusions about average

preferences as our stage 1 valuations data.

In our design, we can directly link each binary choice that a participant sees in stage 2 to a

corresponding stage 1 valuation. More precisely, if in stage 1 a participant provided valuations for

a particular pp, r,Mq, then in stage 2 they made binary choices for a CR problem, a CC problem,

and an MX problem for that same pp, r,Mq and a randomly chosen payment value H. In other

words, each stage 2 binary choice corresponds to a specific row of a stage 1 price list.

Panels A-C of Figure 6 illustrate that there is a strong connection between participants’ stage

1 valuations and their stage 2 choices. In Panel A, the horizontal axis reflects participants’ stage 1

∆CR measures collected into percentile bins, and the vertical axis then reflects the average stage 2

CRE´RCRE within that bin for the corresponding stage 2 binary choice tasks. Panels B and C are

analogous for the ∆CC and ∆MX measures. Across Panels A-C, we see that preferences measured

using stage 1 valuations are highly predictive of stage 2 choice patterns. The correspondence is not

perfect, and in particular, participants are more likely to exhibit the CRE pattern in choices than

their ∆CR measures would predict, less likely to exhibit the CCE pattern in choices than their ∆CC

measures would predict, and more likely to exhibit the MXE pattern in choices than their ∆MX

measures would predict. Nonetheless, clearly choices and valuations are both capturing meaningful
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Figure 5: Preference Patterns vs. Data Patterns
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Note: Figure presents histograms of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 , for the 4,204 observations for which we elicit h1
AB and h1

AB1 . Each
variable can have three potential signs, leading to 27 possible patterns. These signs correspond to the named patterns
(e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to ∆CR “ 0). Bars represent the share of raw responses and are
identical to those in Figure 4. Black dots represent the share of simulated preferences following the decomposition
and simulation described in Section 4.2. Patterns marked in gray denote patterns that would imply an intransitivity
absent decision noise. Patterns marked in blue and denoted P1, P2, P3, and P4 are the four most frequent strict
patterns. Patterns marked in light blue and denoted P12, P23, and P34 are weak patterns in between these frequent
strict patterns. The strict and weak patterns labeled and marked in blue are those that are consistent with our
theoretical development in Section 5.

information about the underlying preferences of interest.29

Panels D-F of Figure 6 highlight how the link between stage 1 valuations and stage 2 choices

becomes even tighter when we use our decomposition from Section 4.2 to reduce the noise in

participants’ stage 1 valuations. Specifically, we combine our estimated population distribution

of preferences with a participant’s elicited stage 1 valuations to generate posterior expectations

(from the perspective of the analyst) for that participant’s ph˚
AB, h

˚
AB1 , h˚

CDq (see Appendix D.4

for details). We then convert those valuations into posterior expectations for that participant’s

p∆˚
CR,∆

˚
CC ,∆

˚
MXq, and use these in Panels D-F. Panels D-F further demonstrate how choices and

valuations both capture meaningful information about the underlying preferences of interest.

29Appendix Figure A.4 illustrates the link between stage 1 elicited indifference values and the corresponding stage
2 choice probabilities; specifically, how the likelihood of choosing A in an AB binary choice task depends on how the
randomly selected H for that choice task compares to a participant’s stage 1 indifference value hAB . That link is also
strong and provides further validation of our approach, but it is less directly related to our conclusions about CRP,
CCP, and MXP.
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Figure 6: Predicting Stage 2 Results using Stage 1 Valuations
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Panel D: CRE ´ RCRE
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Panel B: CCE ´ RCCE
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Panel E: CCE ´ RCCE
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Panel C: MXE ´ RMXE
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Panel F: MXE ´ RMXE
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Notes: Figure relates individual measures of stage 1 ∆CR, ∆CC , and ∆MX to stage 2 measures of CRE ´ RCRE,

CCE ´ RCCE, and MXE ´ RMXE, respectively. Panels A-C use raw stage 1 responses. Panels D-F use the esti-

mated population distribution of preferences from the decomposition in Section 4.2 combined with a participant’s raw

stage 1 valuations to generate posterior preference measures Er∆˚
CR|stage 1s, Er∆˚

CC |stage 1s, and Er∆˚
MX |stage 1s

for that participant. For each x-axis, one hundred equally sized bins are constructed, with approximately 84 observa-

tions per bin for CR and CC measures and 42 observations per bin for MX measures. Within each bin, the value of

stage 2 choice differences is calculated to construct the y-axes. Due to a large number of observations at some values

(particularly zero), there are 82, 78, and 74 unique bins in panels A, B, and C, respectively. To make valuations

comparable across pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed value of the measure

is predicted to yield a larger stage 2 effect the larger is p (see Appendix C.3 for details).

In terms of the aggregate results, our stage 1 valuations and stage 2 choices yield the same

qualitative conclusions regarding our three main preferences of interest. Figure 7 is the analog for

Figure 3 when we use choices instead of valuations, where the measures on the vertical axes are now

CRE ´ RCRE, CCE ´ RCCE, and MXE ´ RMXE. For each pp, rq combination, we combine

choice data across all payment values for H. While Figure 7 is not as stark as Figure 3, we still see

our main conclusions regarding average preferences: The CR pattern is largely invariant to p, with

a CRE emerging for small r but not for large r; the CC pattern is largely invariant to r, where

there is a mild CCE for large p but a strong RCCE for small p; and the MX pattern depends on
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both p and r, where an MXE emerges quite broadly, and it is substantially stronger for smaller p

and smaller r. Appendix Table A.7 is analogous to Table 5 and confirms the statistical significance

of these conclusions.

Figure 7: Mean Effects by p for each r
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Panel B: CCE ´ RCCE
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Panel C: MXE ´ RMXE
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Notes: Figure depicts average values of CRE´RCRE, CCE´RCCE, and MXE´RMXE. Each panel aggregates

over all 8,408 observations. Each point in each panel aggregates over the six payment values for H noted in Table

A.2 and corresponds to approximately 420 observations. The line for zero choice difference is indicated in all three

panels but only serves as a reference (zero does not correspond to the expected utility null hypothesis unless distance

to indifference is zero on average across the two choice tasks in each problem).

Although our stage 2 choices yield the same qualitative message as our stage 1 valuations,

Section 2.5 highlights a major drawback of using binary choice tasks: When comparing behavior

across binary choice tasks, conclusions can be biased if noise has a differential impact across those

binary choice tasks. In McGranaghan et al. (2024), we demonstrated the existence of differential

noise within the context of the CRE, and in particular that noise has a larger impact on the CD

decision than on the AB decision. In Appendix C.3, we perform a similar analysis using the data

from the current experiment. We find evidence of differential noise on all three dimensions. For

CR problems, we again find that noise has a larger impact on the CD decision than on the AB

decision. For CC problems, we find that noise has a larger impact on the AB1 decision than on the

CD decision. For the MX problems, we find that noise has a larger impact on the AB1 decision

than on the AB decision.30 Given that we find evidence of differential noise for all three problems,

it is perhaps surprising that our choice data yield the same conclusions as our valuations data.

This tight connection likely stems from our deliberate choice to balance parameters for stage 2;

specifically, it likely results from our choice of a balanced set of possible payment values for H to

use for each pp, r,Mq.

Furthermore, our results from stage 2 highlight an additional drawback of binary choice data:

30Interestingly, these conclusions differ from the predictions of EU with additive i.i.d utility noise, which would
imply that noise has a smaller impact on the AB choices than either the AB1 or CD choices with equal impact on
the latter two. See Appendix C.3 for more details.
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We can only make statements on qualitative patterns for behavior. Converting these into statements

about the magnitudes of preferences is difficult because the differential noise influences them. Hence,

while choices provide a valuable method to validate our main results, valuations are more robust

and informative in studying risk preference patterns across tasks.

5 Proposed Rationalization: A Preference for Upside Potential

The modal pattern of CRP-RCCP-MXP and the more general prevalence of MXP violate both EU

and leading non-EU models in Table 1. To rationalize our data, one might naturally turn to prospect

theory, and indeed there is some scope to broaden the predictions of prospect theory beyond those

in Table 1 by considering more flexible functional forms. However, we show in Section 5.3 that

such an approach struggles to explain the patterns in our data. In the absence of a rationalizing

theory, we speculate on a possible model that might be able to explain those patterns.

We develop a model based on introspection about why people might exhibit an MXP while also

exhibiting a CRP and RCCP. Encouragingly, this model is also able to explain some of the other

key patterns in our data at both the aggregate and individual levels. While this model is post-hoc

and preliminary, we think our analysis in this section can provide insight for building future models

of risk preferences.

5.1 A Preference for Upside Potential

To motivate our approach, consider a concrete example from our data: When p “ 0.5 (and hence

M “ p ¨ 30 “ 15) and r “ 0.2, the average valuations are hAB “ 38, hAB1 “ 29 and hCD “ 33.

These valuations imply:

A “ p15, 1q „ p38, 0.5q “ B, while B1 “ p38, 0.1; 15, 0.8q ą A,B.

Notice that the AB indifference implies risk aversion: Relative to lottery A, choosing lottery

B yields additional expected value at the cost of additional risk. Now consider what it means to

have an MXP where lottery B1 is preferred to both A and B: Relative to A, the person wants

some of the additional expected value in B at the cost of some of the additional risk, but not all

of the additional expected value in B at the cost of all of the additional risk. At first glance, this

intuition sounds a lot like the usual EU intuition from insurance and finance settings for a person

deciding how much risk to take on. However, the EU logic does not hold in this example because the

person is considering probabilistic mixtures between lotteries rather than hedging payoff amounts

across states. Put differently, this preference suggests that indifference curves are convex in the

Marschak-Machina triangle rather than linear as in EU.

We propose an alternative psychology: Rather than (or perhaps in addition to) caring about

risk in the usual EU way, people decide how much upside potential they want by trading off (i)
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the total probability of winning something versus (ii) expected winnings conditional on winning

something. Applied here, the attraction of B1 relative to B is that it increases the total probability

of winning something. At the same time, the attraction of B1 relative to A is that it increases

expected winnings conditional on winning something.

To formalize this intuition, we assume that a person evaluates lottery pX, qX ;Y, qY q withX,Y ą

0 as

U “ rqXupXq ` qY upY qs
looooooooooomooooooooooon

EU

` fpqX ` qY q
looooomooooon

weighted

upside probability

„

qXκpXq ` qY κpY q

qX ` qY

ȷ

loooooooooooomoooooooooooon

conditional expected

valuation of upside

. (2)

The first term is a standard expected utility component, whereas the second term captures prefer-

ences for upside potential. The latter is the product of the weighted total probability of winning

something and the expected valuation of those winnings conditional on winning something. The

function fpqq permits nonlinearities in how the person cares about the probability of winning some-

thing. The function κpxq captures the person’s relative valuation of different winning amounts.31

Before proceeding, we clarify two points about this model. First, while these preferences per-

haps look like gain-loving preferences (i.e., the opposite of loss aversion), they are distinct because

all winning probabilities are combined and then transformed via f . We further discuss the distinc-

tions between our model and prospect theory in Section 5.3. Second, an important issue for this

formulation is what outcomes are included in the set of winning outcomes. For our experiment, a

natural assumption is that all positive outcomes are included in the set of winning outcomes, and

we explore here the implications of this assumption.32

In equation (2), if fpqq “ q then the model effectively reduces to EU.33 To generate an MXP,

we need f to be convex so that, when considering whether to secure larger expected winnings

conditional on winning something, giving up some probability of winning is not too costly (so one

is willing to move from A to B1), while giving up too much probability of winning is too costly (so

one is not willing to move from B1 to B).

To generate a simple, tractable version of the model with a convex f , we consider the model

predictions when fpqq “ q2 and upxq “ x, in which case

U “ rqXX ` qY Y s ` pqX ` qY q rqXκpXq ` qY κpY qs . (3)

For this parameterized version of the model, the function κ is the free dimension that we can adapt

to explain variation in behavior across individuals or across pp, rq combinations.

31This formulation assumes κp0q “ 0; it permits κpxq “ upxq but also allows for other possibilities.
32Future analyses that apply our intuition of preferences for upside potential to broader environments will need to

address this issue, which is analogous to the issue of what reference point to use in prospect theory and other reference-
dependent models. As in that literature, one might assume some exogenous rule, or that a person’s assessment of
which outcomes are winning outcomes depends on features of the choice set in the spirit of Kőszegi and Rabin, 2007.

33In particular, equation (2) becomes U “ qHrupHq ` κpHqs ` qM rupMq ` κpMqs, which is just EU with Bernoulli
utility function upxq ` κpxq.
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To ensure that preferences are continuous, we apply equation (3) even when qH or qM goes to

zero or one. Hence, for a binary lottery pX, qq with X ą 0 (as in our lotteries B, C, and D),

U “ qX ` q2κpXq,

and for a certain lottery pX, 1q (as in our lottery A),

U “ X ` κpXq.

The former generates effects reminiscent of Allais’ original intuition regarding the non-substitutability

of probability units and the source of certainty effects. Allais (1952) argues that attitudes towards

a 10% chance of winning a prize might depend on whether one already “owns” the other 90%,

implying important complementarities between the first 90% and the last 10% of winning.34 Such

complementarities emerge naturally from our formulation.

Applying the model to our experiment, the triplet ph˚
AB, h

˚
AB1 , h˚

CDq solves

M ` κpMq “ ph˚
AB ` p2κph˚

ABq (4)

M ` κpMq “ prh˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rprκph˚

AB1q ` p1 ´ rqκpMqs (5)

rM ` r2κpMq “ prh˚
CD ` pprq2κph˚

CDq. (6)

In Appendix E.1, we formally derive predictions from these equations, including the following

proposition:

Proposition 1. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (4), (5), and (6). For

any pp, rq P p0, 1q2 and κpxq that is strictly increasing in x:

(1) A person’s ∆˚
CR, ∆

˚
CC , and ∆˚

MX satisfy:

(a) ∆˚
CR ą 0 if and only if κpMq ą p2κph˚

ABq ą p2κph˚
CDq;

∆˚
CR ă 0 if and only if κpMq ă p2κph˚

ABq ă p2κph˚
CDq; and

∆˚
CR “ 0 if and only if κpMq “ p2κph˚

ABq “ p2κph˚
CDq.

(b) ∆˚
CC ą 0 if and only if κpMq ą

´

p
2´p

¯

κph˚
AB1q ą

´

p
2´p

¯

κph˚
CDq;

∆˚
CC ă 0 if and only if κpMq ă

´

p
2´p

¯

κph˚
AB1q ă

´

p
2´p

¯

κph˚
CDq; and

∆˚
CC “ 0 if and only if κpMq “

´

p
2´p

¯

κph˚
AB1q “

´

p
2´p

¯

κph˚
CDq.

(c) ∆˚
MX ą 0 if and only if κpMq ă pκph˚

AB1q ă pκph˚
ABq;

∆˚
MX ă 0 if and only if κpMq ą pκph˚

AB1q ą pκph˚
ABq; and

∆˚
MX “ 0 if and only if κpMq “ pκph˚

AB1q “ pκph˚
ABq.

34Translated from its original formulation in French, Allais’ quote reads: “It seems impossible to me to think that,
if I am cautious, the psychological weight given to a one-in-ten chance to win 100 million should be the same whether
or not I already own the remaining nine-in-ten chance. There is in reality an extremely pronounced complementarity
effect that must be taken into account. This effect is not in itself irrational.” (p.39, emphasis is Allais’.)
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(2) ∆˚
CR ď 0 implies ∆˚

CC ă 0 and ∆˚
MX ą 0, and ∆˚

CC ď 0 implies ∆˚
MX ą 0. (Equivalently,

∆˚
MX ď 0 implies ∆˚

CR ą 0 and ∆˚
CC ą 0, and ∆˚

CC ě 0 implies ∆˚
CR ą 0.)

(3) The person must exhibit one of the following seven patterns of behavior:35

P1: 0 ą ∆˚
CR ą ∆˚

CC and ∆˚
MX ą 0 (RCRP´RCCP´MXP)

P12: 0 “ ∆˚
CR ą ∆˚

CC and ∆˚
MX ą 0 (�CRP´RCCP´MXP)

P2: ∆˚
CR ą 0 ą ∆˚

CC and ∆˚
MX ą 0 (CRP´RCCP´MXP)

P23: ∆˚
CR ą ∆˚

CC “ 0 and ∆˚
MX ą 0 (CRP´�CCP´MXP)

P3: ∆˚
CR ą ∆˚

CC ą 0 and ∆˚
MX ą 0 (CRP´CCP´MXP)

P34: ∆˚
CR “ ∆˚

CC ą 0 and ∆˚
MX “ 0 (CRP´CCP´ �MXP)

P4: ∆˚
CC ą ∆˚

CR ą 0 and ∆˚
MX ă 0 (CRP´CCP´RMXP).

Part 1 of Proposition 1 characterizes conditions for when a person has a CRP, a CCP, and an

MXP. These conditions are derived directly from combinations of equations (4) through (6). While

these conditions are expressed in terms of the endogenous variables h˚
AB and h˚

AB1 , part 2 uses

these conditions to restrict the set of combinations of preferences that can arise from the model.

For instance, one can easily see that the conditions in part 1 for ∆˚
CR ď 0 imply that we must have

∆˚
CC ă 0 and ∆˚

MX ą 0 given that p2 ă p and p2 ă p{p2 ´ pq for any p. Finally, Part 3 lists the

seven patterns of behavior that are consistent with part 2.

It is instructive to highlight the predictions of our model when κpxq “ ϕx for some ϕ ą 0.

Proposition A2 in Appendix E.1 establishes for this case that a person must exhibit P2, P23, or

P3. This includes our modal pattern CRP-RCCP-MXP, and more generally requires that a person

have an MXP. Hence, an MXP arises in this framework not because of specific assumptions on the

shape of κp¨q, but rather due to the way that probabilities enter the upside-potential preferences

(in particular, due to f being convex).

That said, a linear κ function cannot explain all patterns in our data, and cannot even explain

all instances where our modal pattern emerges. For instance, in our motivating case where p “ 0.5,

r “ 0.2, and the average valuations are hAB “ 38, hAB1 “ 29 and hCD “ 33, part 1 of Proposition

1 implies the κp¨q function must satisfy:

1

2
κp29q ą

1

3
κp29q ą κp15q ą

1

4
κp38q.

These conditions can be satisfied only if κ is initially convex and then concave.36 We explore this

point in more detail in Section 5.2.3.

35Patterns including only strict preferences are denoted by single numbers, while patterns including a weak prefer-
ence (e.g., �CRP) are denoted by two numbers referring to the two corresponding strict-preference patterns.

36Specifically, one can combine the second and third inequalities to derive that pκp29q´κp15qq{14 ą pκp15q´κp0qq{15
and pκp29q ´ κp15qq{14 ą pκp38q ´ κp29qq{9. Thus, κ must be on average convex between x “ 0 and x “ 29, and on
average concave between x “ 15 and x “ 38.
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5.2 Exploring Additional Model Predictions

While we developed our model to explain why people might exhibit an MXP while also exhibiting

a CRP and RCCP, we next assess the extent to which our model can account for other patterns in

the data at both the aggregate and individual levels

5.2.1 Distribution of Behavior

Figure 5 in Section 4.2 provides a histogram of observations across the 27 possible preference

patterns that might emerge, along with a histogram of decomposed preferences across the 13 possible

transitive preference patterns that might emerge. As we discuss in Section 4, 55 percent of raw

response patterns and 81 percent of decomposed preference patterns reflect just seven distinct

patterns of behavior. These patterns are denoted in Figure 5 with the labels P1, P12, P2, P23,

P3, P34, and P4 because they correspond to the patterns indicated in part 3 of Proposition 1. Thus

our model is able to rationalize not only the modal pattern of CRP-RCCP-MXP for which it was

created, but also a substantial component of raw response and decomposed preference combinations

that arise across individuals and across pp, rq combinations.

Importantly, the model does not permit every combination. In addition to those patterns that

are ruled out by any theory (i.e., those that violate transitivity, indicated in gray in Figure 5), our

model also rules out six more preference patterns (unshaded patterns in Figure 5). Intransitive

patterns ruled out by any noise-free theory of choice account for 26 percent of raw response pat-

terns (and 0 percent of decomposed preferences). Patterns additionally ruled out by our theory

account for 18 percent of raw response patterns and 19 percent of decomposed preference patterns.

Assuming the extent of intransitive choice patterns is a reasonable benchmark for the extent of

noise-based observations in the data, it is encouraging to see that patterns ruled out by our model

occur at a rate even lower than that generated by noise.

5.2.2 Link to Risk Aversion

An unexpected prediction of our model is that the condition for CRP from part 1 of Proposition

1 coincides with the condition for risk aversion in the AB task. That is, an individual will be risk

averse in the AB task (i.e., will have h˚
AB such that ph˚

AB ą M) if and only if κpMq ą p2κph˚
ABq (see

Proposition A3 in Appendix E.1). Though at the aggregate level we do not see mean risk seeking

at any pp, rq combination, we can assess whether this prediction is supported at the individual

level. Specifically, we use the approach described in Section 4.3 to relate the sign of risk aversion,

Erph˚
AB ´ M |stage 1s, to the sign of CRP, Er∆˚

CR|stage 1s. Roughly 13 percent of observations

exhibit risk tolerance, Erph˚
AB ´ M |stage 1s ă 0; of these, the majority (54%) exhibit RCRP. The

remaining 87 percent exhibit risk aversion; of these, the majority (69%) exhibit CRP. Thus, risk

aversion is significantly correlated with common ratio preferences as our model of upside potential

predicts (Fisher’s exact test p ă 0.001).
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5.2.3 Variation in Behavior Across pp, rq Combinations

We next assess the model’s ability to explain the variation in behavior across different pp, rq com-

binations. To do so, we use our data to estimate the κ function, which is the only free “parameter”

in equation (3). We then assess the fit of the estimated model by comparing the model-predicted

h˚ and ∆˚ values to the actual h and ∆ in the data.

To keep this analysis tractable, we do not focus on behavior at the individual level.37 Rather,

as “data” for the estimation we use the mean responses for hAB, hAB1 , and hCD for each of the

20 pp, rq combinations, thus yielding 60 observations. Equations (E.2)-(E.4) implicitly define h˚
AB,

h˚
AB1 , and h˚

CD as a function of the experimental parameters pp, r,Mq and the parameters of the

function κpzq. Our general approach specifies a function κpz; θq where θ is a vector of parameters

to be estimated. We estimate our model on the 60 observations assuming each mean response

hXY “ h˚
XY pp, r,M, θq ` ϵ using non-linear least squares to provide an estimate of κpz; θq. In

Appendix E.2, we describe the estimation technique in detail and provide corresponding parameter

estimates.

In the absence of an a priori sense of the shape of κ, we begin with a flexible functional form. In

our 60 observations, κpz; θq is evaluated at M “ t9, 15, 24, 27u as well as values of h ranging from

approximately 24 to 45. Hence, we specify a five-parameter piecewise-linear functional form for κ

with kinks at 9, 15, 24, and 27.38 The resulting estimate of κpz; θq shown in Panel A of Figure 8

exhibits an S-shape, featuring a convex segment for low values of x followed by concavity at higher

values.

The estimated model captures a large share of the variation in hAB, h
1
AB and hCD across values

of pp, rq, yielding an R2 “ 0.76 and an MSE “ 3.53.39 The correlation between predicted and

actual h’s is an impressive 0.91, and the correlation between predicted and actual ∆’s is 0.90.40

Motivated by the S-shape in panel A of Figure 8, we propose the following more parsimonious

and analytically tractable three-parameter sigmoid function:

κpz; θq “ θ1 ˚

„

1

1 ` exppθ2pz ´ θ3qq

ȷ

´ θ1 ˚

„

1

1 ` exppθ2p0 ´ θ3qq

ȷ

.

In this formulation, the first bracketed term is a classic two-parameter sigmoid function (with

parameters θ2 and θ3) that goes from zero (as x Ñ ´8) to one (as x Ñ 8). The third parameter

(θ1) is a multiplier on the bracketed term that makes the first term instead go from zero to θ1.

37In light of the variation in Figure 5, estimating our model at the individual level would require permitting het-
erogeneity in the κ function, which in turn would require making assumptions about the nature of that heterogeneity
and would also substantially increase the computational burden.

38In Appendix E.2, we also report results when we add an additional kink at 36. Because that model performs
roughly the same, the five-parameter model discussed in the text is our preferred model.

39The R2 value is calculated as 1 ´ RSS{TSS, where RSS is the sum of squared residuals between the estimated
model and the data, while TSS is the sum of squared deviations to the average h across all 60 observations. Negative
values are possible and would indicate that predicting the mean for every observation would yield a better fit than
the estimated model.

40Panels B and C of Appendix Figure E.2 show that these pairs are clustered relatively close to the 45-degree line.
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Figure 8: Estimates for κpz; θq under Upside-Potential Model

Panel A: Piecewise Linear κpz; θq
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Panel B: Parametric κpz; θq
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Notes: Figure presents estimates for κpz; θq under our upside-potential model. The estimation is conducted using

non-linear least squares with 60 observations of mean responses for hAB , hAB1 , and hCD (20 observations for each).

Panel A presents estimates for κpz; θq when using a five-part piecewise linear formulation, and Panel B presents

estimates for κpz; θq when using a three-parameter functional form for κ. Light red points in each panel correspond

to locations where the function is evaluated in estimation. In panel A, black dots denote kinks in the piecewise linear

formulation; in the estimation, the function is evaluated 15 times at each kink point. Each panel also presents fit

values of mean squared error (MSE), in-sample R2, correlation between predicted and actual h values, and correlation

between predicted and actual ∆ values. The in-sample R2 is given by 1´RSS{TSS, where TSS is the sum of squared

deviations to the average h among the 60 observations, and RSS is the sum of squared residuals between the estimated

model to the data. See Appendix E.2.2 for details.

Finally, the second term subtracts off the value of the first term when it is evaluated at x “ 0;

including this term imposes that κp0q “ 0. Panel B of Figure 8 depicts the estimated κ given

this specification. This more parsimonious version retains substantial predictive accuracy with

R2 “ 0.47, MSE “ 7.72, a correlation between predicted and actual h values of 0.83, and a

correlation between predicted and actual ∆ values of 0.89.

Overall, our model captures important variation in aggregate behavior—both the levels and the

differences—across different pp, rq combinations, even in its relatively parsimonious form with only

three degrees of freedom.

5.3 Can We Explain Our Data with Prospect Theory?

While our model of upside potential is effective at capturing the main data patterns, it is important

to consider how its performance compares to other models. In particular, because there is some

scope to broaden the predictions of prospect theory beyond those in Table 1 by considering more

flexible functional forms for the probability weighting function πpqq, one might wonder whether we
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can explain our data with prospect theory.

In Appendix E.2.3, we use the same approach as in Section 5.2.3 to estimate several variants

of prospect theory. We use both original prospect theory (OPT) and cumulative prospect theory

(CPT). For both approaches, we assume the value function takes the form vpxq “ xα and estimate

the parameter α in addition to the parameters of the probability weighting function. We first

confirm that commonly used functional forms for πpqq perform poorly, where we consider both the

one-parameter version from Tversky and Kahneman (1992) and the two-parameter version from

Lattimore et al. (1992). The best-performing model was CPT with the two-parameter functional

form. Panel A of Figure 9 depicts the estimated πpqq function for that model. The in-sample fit is

indeed poor, with a negative in-sample R2 of -0.23, MSE “ 18.02, a correlation between predicted

and actual h’s of 0.55, and a correlation between predicted and actual ∆’s of 0.70.41

We next considered a flexible six-part piece-wise linear functional form that permits (but does

not require) discontinuities at q “ 0 and q “ 1. For both OPT and CPT, we put the kinks

at the values of q where πpqq is frequently evaluated while also trying to have similar numbers of

instances within each segment. The best-performing model was the CPT version, and the estimated

πpqq function for that model is depicted in panel B of Figure 9. We find the classical pattern of

overweighting of low probabilities and underweighting of high probabilities, although substantially

more overweighting appears than generally estimated. Despite its flexibility and additional degrees

of freedom, even this prospect theory model substantially underperforms both estimated models of

upside potential from Figure 8, with an R2 “ 0.25, MSE “ 11.02, a correlation between predicted

and actual h values of 0.71, and a correlation between predicted and actual ∆ values of 0.72.42

To understand why prospect theory models perform substantially worse than our model, in

Appendix E.3 we explore how upside potential conceptually differs from both CPT and OPT.

Within both CPT and OPT, the decision weight applied to each outcome depends only on that

outcome’s probability (or cumulative probability in the case of CPT). Under upside potential, the

decision weight applied to each winning outcome depends on both that outcome’s probability and

the total probability of winning. For binary lotteries with one winning outcome, such as lotteries

B, C, and D, the distinction is limited as the winning outcome’s probability is also the total

probability of winning. However, in trinary lotteries such as lottery B1, the distinction is a critical

source of difference. In other words, it is for decisions involving trinary lotteries, such as in our

AB1 task, where our upside-potential model becomes distinct from CPT and OPT.

Finally, while it is not relevant to our analysis in this paper, we highlight one further distinction

between our upside-potential model and CPT. Under CPT, the weights attached to outcomes

depend on their relative ranks. The weights applied to winning outcomes under our model are

symmetric: each weight depends on that outcome’s probability and the total probability of winning

and doesn’t asymmetrically shift with relative rank. Hence, our model is consistent with the growing

41Note that the negative R2 term implies that one would be more accurate predicting the sample mean for every
observation.

42See Appendix E.2.3 for details, including the estimates for all six prospect theory models that we consider.
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Figure 9: Estimates for πpqq under Prospect Theory

Panel A: CPT with Parametric πpqq
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Panel B: CPT with Piecewise Linear πpqq
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Notes: Figure presents estimates for probability weighting function πpqq under CPT. The estimation is conducted

using non-linear least squares with 60 observations of mean responses for hAB , hAB1 , and hCD (20 observations

for each). Panel A presents estimates for πpqq when using the two-parameter probability weighting function from

Lattimore et al. (1992), and Panel B presents estimates for πpqq when using a six-part piecewise linear formulation

that permits (but does not require) discontinuities at q “ 0 and q “ 1. For both panels, the estimation also involves

estimating a value function vpxq “ xα. Light red points in each panel correspond to locations where the function is

evaluated in the estimation. In panel B, black dots denote kinks in the piecewise linear formulation; in estimation,

the function is evaluated multiple times at each kink point. Each panel also presents fit values of mean squared

error (MSE), in-sample R2, correlation between predicted and actual h values, and correlation between predicted and

actual ∆ values. The in-sample R2 is given by 1 ´ RSS{TSS, where TSS is the sum of squared deviations to the

average h among the 60 observations, and RSS is the sum of squared residuals between the estimated model to the

data. See Appendix E.2.3 for details.

body of evidence suggesting rank-independence (Bernheim and Sprenger, 2020; Bernheim et al.,

2022).

6 Discussion

In this paper, we study connected CR-CC-MX problems across a broad range of experimental

parameters using valuations. While our empirical findings for mean preferences match the common

wisdom of CRP, CCP, and near-zero MXP when using canonical experimental parameters, we

find a robust pattern of CRP-RCCP-MXP at other experimental parameters. More generally,

our empirical results highlight how mean preference patterns can be sensitive to experimental

parameters and that there can be substantial heterogeneity in patterns of preferences. Because

these empirical results are inconsistent with EU and leading non-EU models, we also posit a post-
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hoc theoretical model designed to explain our modal mean preference. Encouragingly, this model

successfully predicts some of the more nuanced data patterns we observe, suggesting it might hold

insight for future theoretical work. We conclude by discussing some broader messages to take away

from our analysis.

Our analysis highlights the danger of inferring broad preference features from isolated examples

that cover a limited part of the parameter space. In particular, our results show that one must be

careful when motivating global assumptions based on such examples when developing models. This

caution applies beyond the domain of risk: Many prominent non-standard models of preferences—

from the domains of ambiguity to intertemporal choice and beyond—are based on data from few

canonical examples, without understanding empirically how behavior might be sensitive to relevant

features of the decision problem. Moreover, the prior literature has often studied non-standard

choice examples independently rather than together. A more comprehensive empirical foundation

for theorizing emerges by simultaneously studying multiple preference features across a broad range

of parameters. We also emphasize an important follow-up point: As we gain more insight into

how patterns change across parameters and individuals, we may need to develop models that can

accommodate sensitivities to parameters and individual differences, rather than predicting global,

uniform effects. This doesn’t necessarily require complex models with many degrees of freedom.

In fact, our proposed model, based on a simple intuition, outperforms the leading non-EU model

with fewer parameters.

Our analysis also reinforces a key methodological point from McGranaghan et al. (2024) that

cautions against using binary choice data when making comparisons across decisions and instead

encourages using valuation data for such comparisons. Many behavioral “effects” are based on

evidence from comparing a pair of binary choice tasks. In our data, the CR, CC, and MX problems

all show hallmarks of the confounds induced by differential noise, indicating that evidence from

binary choice data could present a biased picture of the underlying preferences. While our binary

choice data ultimately generate the same qualitative conclusions as our valuations data, they do so

mainly due to our deliberate selection of balanced parameters—a selection made possible by the

fact that we had pilot data on valuations. Hence, we hope future studies will use valuations rather

than binary choices (or in addition to binary choices) when studying comparisons across decisions.

Our analysis relates to a nascent literature that emphasizes a direct preference for purposeful

randomization (i.e., mixing) between lotteries (Agranov and Ortoleva, 2017; Dwenger et al., 2018;

Feldman and Rehbeck, 2022; Agranov et al., 2023; Agranov and Ortoleva, 2023). These studies

often present individuals with the same decision problem multiple times, either mixed throughout

the study or repeated explicitly in a row, and randomization manifests as making different choices

across repetitions. Deliberate randomization between two successive presentations of an AB choice

is clearly consistent with exhibiting an MXP in our context, though a limitation of such designs

is that they cannot reveal an RMXP. Future work could explore whether there is an empirical

connection between these behaviors, for example, by testing whether the people who exhibit an
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MXP in paired decision tasks are the same as those who exhibit deliberate randomization in two

successive presentations of an AB choice.43 Exploring the empirical connection seems particularly

apt given the different theoretical explanations for mixture preferences here and elsewhere. In

particular, a common rationalization of purposeful randomization in the prior literature has been

the theory of cautious expected utility (Cerreia-Vioglio et al., 2015) (CEU), but CEU maintains

betweenness in comparisons with degenerate lotteries like lottery A in our study, and thus it cannot

accommodate the type of mixture preferences we study and observe. Additionally, our model of

upside potential permits conditions under which individuals will be averse to mixtures, rather than

exhibiting solely a systematic preference for them.

On the surface, our empirical finding of an MXP and our post-hoc model’s rationalization of that

MXP seem to contradict recent work suggesting that lotteries with greater numbers of outcomes

are penalized (Bernheim and Sprenger, 2020; Fudenberg and Puri, 2022; Puri, 2024). However, that

work focuses on different types of lotteries and, therefore, could be consistent with our results. For

example, Bernheim and Sprenger (2020) find that people prefer binary lotteries to nearby trinary

lotteries that are constructed by splitting one of the binary lottery payments into two equally likely

payments while retaining the same expected value. This comparison is very different from our

MX problem. Moreover, our model can in fact simultaneously accommodate both phenomena. As

we discuss in Section 5.1, our model generates an MXP even with a linear κ function. At the

same time, whether a person is averse to the type of lottery splitting studied by Bernheim and

Sprenger (2020) is related to the local concavity or convexity of κ around the split outcome, with

local concavity implying an aversion to splits (see Appendix E.1 for details). Of course, it would

be valuable for future work to explore these connections further.

Finally, and most importantly, our results and analysis call for the development of new models

of risk preferences alongside the development of a more complete empirical foundation for risky

choice. Our empirical findings are at odds with EU and leading non-EU models. We have taken a

first step in postulating a post-hoc model that performs well on the narrow domain of our data, but

it is clearly not a complete account of risky choice. CR-CC-MX problems represent a tiny fraction

of risky choices and extending the domain through principled exploration of problems away from

the CR-CC-MX structure is a critical step to take. We hope the psychology of upside potential,

and its novel perspective on the source of risk attitudes, will prove useful for guiding such empirical

explorations and the theories that will follow.
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