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A Additional Tables and Figures

Table A.1: Participant Demographics

(1) (2) (3) (4) (5) (6)

Full

Sample

Any

r “ 0.1

Any

r “ 0.2

Any

r “ 0.3

Any

r “ 0.5

Any

r “ 0.8

Number of Participants 2,102 1,247 1,250 1,246 1,221 1,212

Time Taken (in minutes) 27.3 27.2 27.3 27.3 27.3 27.4

Age 25.2 25.1 25.1 25.4 25.2 25.2

Prolific Score 99.8 99.8 99.8 99.8 99.8 99.8

Number of Approvals 304.9 304.7 298.7 310.5 302.9 305.5

Female 50.0 50.6 50.2 49.9 49.5 50.3

Current Student 41.9 42.0 43.7 41.0 40.1 42.0

College Degree 62.1 62.4 61.8 62.5 62.7 62.5

Working (full- or part-time) 59.3 58.5 59.3 60.8 58.9 60.1

English First Language 57.9 58.9 57.2 59.1 58.9 56.8

Attention Checks

Incentive Question Correct 95.5 95.4 95.8 95.7 95.8 95.6

Passed Attention Check 96.3 96.2 96.6 96.4 96.2 96.5

Comprehension Questions

MPL Question Correct 85.2 84.5 85.5 84.5 85.9 84.7

Bin Question Correct 79.4 79.7 79.7 78.9 78.5 79.9

Both Questions Correct 69.4 69.5 69.7 67.7 69.4 69.3

Current Residency

United States 24.6 25.3 23.2 25.2 26.0 24.6

United Kingdom 38.4 37.9 39.8 39.3 37.3 38.0

Portugal 21.8 21.7 22.5 20.5 21.5 22.9

Spain 5.5 5.3 5.0 5.6 5.2 5.8

Germany 3.1 3.4 2.9 3.0 3.1 2.7

Notes: Column (1): participant demographics for all 2,102 participants. Columns (2) to Column (6):
participant demographics if ever assigned to a given value of r across four possible pp, rq pairs.
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Table A.2: Mean Valuations by p and r

hAB hAB1 hCD h
1
CD

N h
1
AB

h
1
AB1 N

Panel A: r “ 0.1
p “ 0.3 36.78 23.83 31.10 34.43 406 36.24 24.92 208
p “ 0.5 37.99 27.77 31.50 32.59 421 37.62 28.47 203
p “ 0.8 41.34 36.52 34.91 34.86 422 40.50 35.14 205
p “ 0.9 40.37 35.20 34.37 33.81 430 40.36 36.38 219

Panel B: r “ 0.2
p “ 0.3 35.63 26.35 32.16 32.07 425 34.89 23.95 212
p “ 0.5 38.57 29.17 34.00 32.82 468 39.09 30.35 207
p “ 0.8 39.56 36.36 36.52 36.46 419 38.79 35.59 216
p “ 0.9 39.42 38.71 35.20 35.34 398 40.22 39.68 194

Panel C: r “ 0.3
p “ 0.3 36.48 29.14 34.49 34.25 399 36.50 28.76 211
p “ 0.5 39.65 32.95 35.55 35.65 389 38.74 33.89 194
p “ 0.8 42.18 39.37 35.92 36.44 474 40.88 39.01 249
p “ 0.9 39.32 40.14 37.09 37.62 435 39.00 40.26 213

Panel D: r “ 0.5
p “ 0.3 37.38 30.17 38.23 38.00 426 37.64 31.48 207
p “ 0.5 39.28 34.37 39.51 39.58 412 38.62 35.17 221
p “ 0.8 38.75 37.61 37.82 37.71 388 38.87 36.21 191
p “ 0.9 38.58 38.67 37.43 36.78 425 39.12 37.36 197

Panel E: r “ 0.8
p “ 0.3 37.34 34.54 36.73 36.89 446 36.73 35.07 237
p “ 0.5 38.04 37.45 38.67 38.25 412 38.81 36.98 193
p “ 0.8 40.64 41.25 42.56 42.56 399 40.50 41.84 215
p “ 0.9 38.32 39.48 37.87 38.01 414 38.21 38.71 212

Notes: Table presents mean valuations for each pp, rq combination. Each participant provides a valuation
for four pp, rq combinations subject to the restriction that they see each p exactly once. For two pp, rq pairs,
participants report all six valuations: hAB , hAB1 , hCD, h1

AB , h
1
AB1 , and h

1
CD. For the remaining two pp, rq pairs,

participants provide four valuations: hAB , hAB1 , hCD, and h
1
CD. We randomly label multiple valuations hXY

or h1
XY , so that it was equally likely that either was presented first.
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Table A.3: Correlations Between hXY and h
1
XY

by p and r

(1) (2) (3) (4) (5)
r “ 0.1 r “ 0.2 r “ 0.3 r “ 0.5 r “ 0.8

Panel A: ωphAB, h
1
AB

q
p “ 0.3 0.256 0.369 0.422 0.372 0.617
p “ 0.5 0.402 0.464 0.540 0.586 0.696
p “ 0.8 0.428 0.545 0.395 0.447 0.641
p “ 0.9 0.314 0.497 0.402 0.519 0.548

Panel B: ωphAB1 , h1
AB1q

p “ 0.3 0.254 0.492 0.439 0.433 0.545
p “ 0.5 0.320 0.406 0.445 0.619 0.614
p “ 0.8 0.564 0.444 0.461 0.475 0.584
p “ 0.9 0.292 0.514 0.385 0.355 0.483

Panel C: ωphCD, h
1
CD

q
p “ 0.3 0.452 0.453 0.570 0.538 0.541
p “ 0.5 0.474 0.512 0.410 0.590 0.583
p “ 0.8 0.435 0.484 0.461 0.389 0.529
p “ 0.9 0.462 0.431 0.485 0.453 0.432

Notes: Table reports correlation coe!cients calculated using all valuations for which there are multiple measures
for a given individual and pp, rq. Multiple measures of hCD are available for all observations, and therefore an
average sample of 420 observations is used to compute each ωphCD, h

1
CDq. Multiple measures of hAB and hAB1 are

available for only half of observations, and therefore an average sample of 210 observations is used to compute each
ωphAB , h

1
ABq and ωphAB1 , h1

AB1 q. The exact sample sizes for each cell are listed in Appendix Table A.2.
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Table A.4: Mean !CR, !CC , and !MX by p and r

Panel A: Mean !CR

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 5.68˚,: 6.49˚,: 6.42˚,: 6.00˚,:

r “ 0.2 3.48˚,: 4.57˚,: 3.04˚,: 4.22˚,:

r “ 0.3 1.99˚,: 4.10˚,: 6.26˚,: 2.23˚,:

r “ 0.5 ´0.85 ´0.23 0.93 1.16

r “ 0.8 0.61 ´0.63 ´1.92˚,: 0.45

Panel B: Mean !CC

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 ´10.60˚,: ´4.81˚,: 1.66 1.39

r “ 0.2 ´5.72˚,: ´3.65˚,: ´0.10 3.36˚,:

r “ 0.3 ´5.11˚,: ´2.70˚,: 2.93˚ 2.52˚

r “ 0.5 ´7.83˚,: ´5.22˚,: ´0.11 1.89˚

r “ 0.8 ´2.35˚,: ´0.80: ´1.31: 1.46˚

Panel C: Mean !CR ´ !CC

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 16.28˚,: 11.30˚,: 4.76˚,: 4.61˚,:

r “ 0.2 9.19˚,: 8.22˚,: 3.14˚,: 0.86:

r “ 0.3 7.10˚,: 6.80˚,: 3.32˚,: ´0.29;

r “ 0.5 6.98˚,: 4.99˚,: 1.04 ´0.73

r “ 0.8 2.96˚,: 0.17 ´0.62 ´1.01

Panel D: Mean !MX

p = 0.3 p = 0.5 p = 0.8 p = 0.9

r “ 0.1 11.32˚,: 9.15˚,: 5.36˚,: 3.98˚,:

r “ 0.2 10.94˚,: 8.74˚,: 3.19˚,: 0.54

r “ 0.3 7.74˚,: 4.85˚,: 1.87˚,: ´1.26

r “ 0.5 6.16˚,: 3.45˚,: 2.66˚,: 1.76:

r “ 0.8 1.67˚,: 1.82˚,: ´1.34 ´0.50

Notes: Table presents mean values along with corresponding hypothesis tests for ”CR “ hAB ´ hDE , ”CC “
hAB1 ´h

1
DE , ”CR´”CC , and ”MX “ h

1
AB ´h

1
AB1 . Panels A, B, and C aggregate data across all 8,408 observations,

with each entry corresponding to roughly 420 observations. Panel D aggregates across the 4,204 observations for

which we elicit h
1
AB and h

1
AB1 , with each entry corresponding to roughly 210 observations. Expected utility null

hypothesis corresponds to zero mean or zero sign di#erence. ˚ denotes that the value is significantly di#erent from

zero at the 5 percent level using a means test. : denotes a significant deviation in the direction of the reported sign

at the 5 percent level using a sign test.

Table A.5: Predicting the Prevalence of CR, CC, and MX by p and r

(1) (2) (3) (4)
Outcome: !CR !CC !CR ´ !CC !MX

Probability (p) 1.00 13.96 ´12.96 ´10.95
(0.67) (0.71) (0.92) (0.95)

Common Ratio (r) ´9.16 1.82 ´10.97 ´9.24
(0.66) (0.74) (0.84) (0.86)

Outcome Mean 2.74 ´1.72 4.46 4.07
Observations 8,408 8,408 8,408 4,204

Notes: Table presents ordinary least squares regressions of !CR “ hAB ´ hDE , !CC “ hAB1 ´ h
1
DE

, !CR ´ !CC , and
!MX “ h

1
AB

´ h
1
AB1 on experimental parameters pp, rq. Columns (1)-(3) use all 8,408 observations from 2,102 participants,

while column (4) uses 4,204 observations from 2,102 participants. Specification also includes a constant that is not reported.
Standard errors clustered at individual level in parentheses.



Table A.6: Means and Sign Tests
(1) (2) (3) (4) (5) (6) (7) (8)

Number of Cases
Probability Common ” Mean Test ” ! 0 ” “ 0 ” " 0 Sign Test ”

(p) Ratio (r) (Mean) (p-value) (p-value) (Median)

Panel A: Test of ”˚
CR

“ 0
0.3 0.1 5.68 0.000 224 65 117 0.000 4
0.3 0.2 3.48 0.000 208 60 157 0.009 0
0.3 0.3 1.99 0.016 186 72 141 0.015 0
0.3 0.5 ´0.85 0.243 160 93 173 0.511 0
0.3 0.8 0.61 0.363 176 79 191 0.465 0
0.5 0.1 6.49 0.000 245 71 105 0.000 5
0.5 0.2 4.57 0.000 249 93 126 0.000 1
0.5 0.3 4.10 0.000 215 52 122 0.000 2
0.5 0.5 ´0.23 0.722 153 97 162 0.652 0
0.5 0.8 ´0.63 0.295 146 112 154 0.686 0
0.8 0.1 6.42 0.000 278 50 94 0.000 6
0.8 0.2 3.04 0.000 239 60 120 0.000 3
0.8 0.3 6.26 0.000 299 62 113 0.000 4
0.8 0.5 0.93 0.214 176 65 147 0.119 0
0.8 0.8 ´1.92 0.004 121 76 202 0.000 ´1
0.9 0.1 6.00 0.000 291 55 84 0.000 3
0.9 0.2 4.22 0.000 236 61 101 0.000 2
0.9 0.3 2.23 0.002 230 74 131 0.000 1
0.9 0.5 1.16 0.112 191 77 157 0.077 0
0.9 0.8 0.45 0.443 177 62 175 0.958 0

Panel B: Test of ”˚
CC

“ 0
0.3 0.1 ´10.60 0.000 93 36 277 0.000 ´8
0.3 0.2 ´5.72 0.000 129 50 246 0.000 ´3
0.3 0.3 ´5.11 0.000 121 59 219 0.000 ´2
0.3 0.5 ´7.83 0.000 96 59 271 0.000 ´6
0.3 0.8 ´2.35 0.002 156 73 217 0.002 0
0.5 0.1 ´4.81 0.000 127 54 240 0.000 ´4
0.5 0.2 ´3.65 0.000 128 69 271 0.000 ´4
0.5 0.3 ´2.70 0.002 119 64 206 0.000 ´1
0.5 0.5 ´5.22 0.000 106 67 239 0.000 ´4
0.5 0.8 ´0.80 0.240 136 85 191 0.003 0
0.8 0.1 1.66 0.062 171 86 165 0.785 0
0.8 0.2 ´0.10 0.894 164 60 195 0.113 0
0.8 0.3 2.93 0.000 216 77 181 0.088 0
0.8 0.5 ´0.11 0.887 155 76 157 0.955 0
0.8 0.8 ´1.31 0.071 149 46 204 0.004 ´1
0.9 0.1 1.39 0.059 170 111 149 0.263 0
0.9 0.2 3.36 0.000 182 81 135 0.010 0
0.9 0.3 2.52 0.002 193 70 172 0.295 0
0.9 0.5 1.89 0.009 170 73 182 0.558 0
0.9 0.8 1.46 0.026 170 72 172 0.957 0

Panel C: Test of ”˚
MX

“ 0
0.3 0.1 11.32 0.000 143 27 38 0.000 9
0.3 0.2 10.94 0.000 161 18 33 0.000 10
0.3 0.3 7.74 0.000 127 43 41 0.000 5
0.3 0.5 6.16 0.000 127 35 45 0.000 5
0.3 0.8 1.67 0.031 114 41 82 0.027 0
0.5 0.1 9.15 0.000 144 30 29 0.000 10
0.5 0.2 8.74 0.000 139 38 30 0.000 6
0.5 0.3 4.85 0.000 113 36 45 0.000 4
0.5 0.5 3.45 0.000 111 48 62 0.000 1
0.5 0.8 1.82 0.048 89 48 56 0.008 0
0.8 0.1 5.36 0.000 132 35 38 0.000 5
0.8 0.2 3.19 0.001 125 35 56 0.000 4
0.8 0.3 1.87 0.049 144 36 69 0.000 2
0.8 0.5 2.66 0.009 107 32 52 0.000 2
0.8 0.8 ´1.34 0.117 70 53 92 0.099 0
0.9 0.1 3.98 0.001 134 37 48 0.000 3
0.9 0.2 0.54 0.634 87 37 70 0.201 0
0.9 0.3 ´1.26 0.218 86 40 87 1.000 0
0.9 0.5 1.76 0.103 95 45 57 0.003 0
0.9 0.8 ´0.50 0.519 79 42 91 0.399 0

Notes: Means test and sign test for !CR, !CC , and !MX for each pp, rq combination. We conduct a two-sided t-test
for the di”erence in means. We also conduct a two-sided sign test, where we exclude all ties (instances of !Z “ 0). See
Appendix C.1 for test descriptions.
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Table A.9: Sensitivity of Results to Experimental Parameters in our Stage 2 Experiments

Panel A. Experimental-Parameter Sensitivity

(1) (2) (3)
CR CC MX

Study Study Study

Probability (p) 23.25 49.57 ´28.62
(6.16) (6.14) (5.89)

Common Ratio (r) ´35.19 ´2.70 ´29.88
(2.47) (2.52) (2.30)

Outcome Mean 10.45 ´5.77 16.00
Experiments 120 120 120
Observations 8,408 8,408 8,408

Panel B. Canonical vs. Non-Canonical Parameters

(4) (5) (6)

Canonical
Non-

Canonical
Di”erence

(i): KT Parameters
CRE ´ RCRE 17.02 9.67 ´7.35

(8.36) (13.76) [´1.86]
Experiments 12 108 120

(ii): Allais Parameters
CCE ´ RCCE 7.91 ´6.51 ´14.41

(5.93) (12.96) [´2.73]
Experiments 6 114 120

Notes: Panel A presents linear regressions that assess the sensitivity of experimental results from CR, CC, or MX studies

from our stage 2 experiments. The specifications include the probability of the high outcome (p), the common ratio (r)

linearly, and a constant. Column (1) presents the results for the 120 CR experiments that we conducted in stage 2 of our

experiment, where the outcome is the net share of participants displaying a CRE relative to an RCRE, CRE ´ RCRE.

Column (2) presents the results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the

outcome is the net share of participants displaying a CCE relative to an RCCE, CCE´RCCE. Column (3) presents the

results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the outcome is the net share

of participants displaying a MXE relative to an RMXE, MXE ´ RMXE. Standard errors are in parentheses. Panel

B presents the average of these outcomes based on whether our stage 2 experiments were conducted at the canonical

parameters in Kahneman and Tversky (1979) (p “ 0.8, r P t0.2, 0.3u) or Allais (1953) (p “ 0.9, r “ 0.1). Standard

deviations are in parentheses, and t-statistics are in brackets.

9



Figure A.1: Histogram of Response Patterns for r P t0.1, 0.2, 0.3u and p P t0.8, 0.9u
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”CC “ hAB1 ´ h

1
DE , and ”MX “ h
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AB ´ h

1
AB1 . Each variable can have three potential signs, leading to 27 possible

patterns. These signs correspond to the named patterns (e.g., CR to ”CR ! 0, RCR to ”CR " 0, and !CR to
”CR “ 0). The histogram covers the 1,296 observations from the parameters r P t0.1, 0.2, 0.3u and p P t0.8, 0.9u for
which we elicit h1

AB and h
1
AB1 . Patterns marked in light green are ones with ”CR ! 0 and ”CC ! 0.
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Figure A.2: Histogram of Response Patterns for r R t0.1, 0.2, 0.3u or p R t0.8, 0.9u
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”CC “ hAB1 ´ h

1
DE , and ”MX “ h
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AB ´ h

1
AB1 . Each variable can have three potential signs, leading to 27 possible

patterns. These signs correspond to the named patterns (e.g., CR to ”CR ! 0, RCR to ”CR " 0, and !CR to
”CR “ 0). The histogram covers the 2,908 observations from the parameters r R t0.1, 0.2, 0.3u or p R t0.8, 0.9u for
which we elicit h1

AB and h
1
AB1 . Patterns marked in light green are ones with ”CR ! 0 and ”CC ! 0.
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Figure A.3: Histogram of Response Patterns for r P t0.1, 0.2, 0.3u and p P t0.3, 0.5u
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Notes: Figure presents histogram of psignp”CRq, signp”CCq, signp”MXqq combinations, where ”CR “ hAB ´ hCD,
”CC “ hAB1 ´ h
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DE , and ”MX “ h
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AB ´ h
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AB1 . Each variable can have three potential signs, leading to 27 possible

patterns. These signs correspond to the named patterns (e.g., CR to ”CR ! 0, RCR to ”CR " 0, and !CR to
”CR “ 0). The histogram covers the 2,508 observations from the parameters r P t0.1, 0.2, 0.3u or p P t0.3, 0.5u for
which we elicit h1

AB and h
1
AB1 . Patterns marked in light green are ones with ”CR ! 0 and ”CC ! 0.
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Figure A.4: Predicting Stage 2 Choice Probabilities using Stage 1 Valuations
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Panel C: PrpC|tC,Duq
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Panel F: PrpC|tC,Duq
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Notes: Figure relates individual stage 1 measures of hXY ´H to stage 2 choice shares PrpX|tX,Y uq. Panels A-C use raw
stage 1 responses. Panels D-F use the estimated population distribution of preferences from the decomposition in Section
4.4 combined with a participant’s raw stage 1 valuations to generate a posterior preference measure Erh˚

XY
|stage 1s for

that participant. For each x-axis, one hundred equally sized bins are constructed with approximately 168 observations
per bin. Within each bin, the stage 2 choice share is calculated to construct the y-axis. Due to a large number of
observations at some values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make valuations
comparable across pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed value of the measure
is predicted to yield a larger stage 2 e#ect the larger is p (see Appendix C.3 for details).
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Figure A.5: Structural Estimates and Model Fit
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Panel B: Upside Potential Estimates ´ Parametric Functional Form
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Panel C: CPT Probability Weighting Estimates ´ Flexible Functional Form
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Notes: This figure presents the estimated parameter functions and model fit for our model of upside potential with a
flexible (Panel A) and a parametric (Panel B) functional form, along with the best-fitting CPT model with a flexible
form (Panel C). The left panels depict the estimated functions, ε or ϑ. The middle panels depict the in-sample fit for
our three valuations, hAB , hAB1 , and hCD. The right panels depict the in-sample fit for our three preference measures,
”CR, ”CC , and ”MX .
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B Predictions of Existing Non-EU Models

In this appendix, we derive the predictions presented in Table 1. To review the structure, given

parameters pM,p, rq, h
˚
AB

, h
˚
AB1 , and h

˚
CD

are the indi!erence values that satisfy the following

indi”erence conditions:

pM, 1q „ ph˚
AB

, pq

pM, 1q „ ph˚
AB1 , pr;M, 1 ´ rq

pM, rq „ ph˚
CD

, prq

The objects of interest are then:

!˚
CR

” h
˚
AB

´ h
˚
CD

!˚
CC

” h
˚
AB1 ´ h

˚
CD

!˚
MX

” h
˚
AB

´ h
˚
AB1

B.1 Original Prospect Theory (OPT)

Under original prospect theory (OPT) as in Kahneman and Tversky (1979), the indi”erence values

are determined from:

vpMq “ ϖppqvph˚
AB

q !ñ h
˚
AB

“ v
´1

ˆ
1

ϖppqvpMq
˙

vpMq “ ϖpprqvph˚
AB1q ` ϖp1 ´ rqvpMq !ñ h

˚
AB1 “ v

´1

ˆ
1 ´ ϖp1 ´ rq

ϖpprq vpMq
˙

ϖprqvpMq “ ϖpprqvph˚
CD

q !ñ h
˚
CD

“ v
´1

ˆ
ϖprq
ϖpprqvpMq

˙

Hence:

!˚
CR

" 0 !ñ h
˚
AB

" h
˚
CD

!ñ 1

ϖppq " ϖprq
ϖpprq

!˚
CC

" 0 !ñ h
˚
AB1 " h

˚
CD

!ñ 1 ´ ϖp1 ´ rq " ϖprq
!˚

MX
" 0 !ñ h

˚
AB

" h
˚
AB1 !ñ 1

ϖppq " 1 ´ ϖp1 ´ rq
ϖpprq

In this formulation, vpxq is a value function defined over experimental gains and losses, but note

that as long as v is monotonically increasing, its form is irrelevant to OPT’s predictions for the

sign of !˚
CR

, !˚
CC

, and !˚
MX

. In contrast, ϖpqq is a probability weighting function that transforms
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probabilities into decision weights, and its form fully determines those predictions. Here, we derive

predictions using the functional form from Tversky and Kahneman (1992):

ϖpqq “ q
ω

rqω ` p1 ´ qqωs1{ω

This one-parameter functional form nests the EU case of ϖpqq “ q when ϱ “ 1. For ϱ P p0.279, 1q,
it has the inverse-S shape emphasized by Tversky and Kahneman (1992) and the subsequent liter-

ature: It is initially concave and then convex, with overweighting (ϖpqq " q) for small q and then

underweighting (ϖpqq # q) for larger q.50 Tversky and Kahneman (1992) suggest a ϱ of roughly 0.6.

For ϱ " 1, this functional form initially yields an S-shape—initially convex and then concave with

underweighting for small q and then overweighting for larger q—but eventually becomes convex with

underweighting for all q P p0, 1q.

OPT Result:

(1) ϱ P p0.279, 1q implies !˚
CR

" 0 and !˚
CC

" 0; !˚
MX

can be positive or negative

depending on pp, rq combination.

(2) ϱ " 1 implies !˚
CR

# 0, !˚
CC

" 0, and !˚
MX

# 0.

Proof: Consider first the !˚
CR

results. Rearranging the condition above yields

!˚
CR : 0 !ñ ϖpprq

ϖprq : ϖppq

which we can write as

pprqω
rpprqω ` p1 ´ prqωs1{ω

“
prqω ` p1 ´ rqω

‰1{ω

prqω :
ppqω

rppqω ` p1 ´ pqωs1{ω .

Canceling terms and then taking both sides to the power ϱ yields

prqω ` p1 ´ rqω
pprqω ` p1 ´ prqω :

1

ppqω ` p1 ´ pqω

rppqω ` p1 ´ pqωsrprqω ` p1 ´ rqωs : pprqω ` p1 ´ prqω

pprqω ` ppp1 ´ rqqω ` prp1 ´ pqqω ` pp1 ´ pqp1 ´ rqqω : pprqω ` p1 ´ prqω

ppp1 ´ rqqω ` prp1 ´ pqqω ` pp1 ´ pqp1 ´ rqqω : p1 ´ prqω

Note that we can rewrite this as

a
ω ` b

ω ` c
ω : dω

50For ϖ P p0, 0.279q, ϑpqq is nonmonotonic (Ingersoll, 2008).
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where a “ pp1 ´ rq, b “ rp1 ´ pq, c “ p1 ´ pqp1 ´ rq, and d “ 1 ´ pr, and note that a ` b ` c “ d.

Then because the function fpxq “ x
ω is concave when ϱ # 1, it follows that a ` b ` c “ d implies

fpaq ` fpbq ` fpcq " fpdq, and thus ϱ # 1 implies !˚
CR

" 0. Analogously, fpxq is convex when ϱ " 1,

so a ` b ` c “ d implies fpaq ` fpbq ` fpcq # fpdq, and thus ϱ " 1 implies !˚
CR

# 0.

Next consider the !˚
CC

results. Rearranging the condition above yields

!˚
CC : 0 !ñ 1 : ϖprq ` ϖp1 ´ rq

which we can write as

1 :
prqω

rprqω ` p1 ´ rqωs1{ω ` p1 ´ rqω
rprqω ` p1 ´ rqωs1{ω

1 :
”
prqω ` p1 ´ rqω

ı1´1{ω

When ϱ # 1: r # 1 and ϱ # 1 implies r
ω " r and p1 ´ rqω " 1 ´ r and thus prqω ` p1 ´ rqω " 1. In

addition, ϱ # 1 implies 1 ´ 1{ϱ # 0, and thus
“
prqω ` p1 ´ rqω

‰1´1{ω # 1 and therefore !˚
CC

" 0.

When ϱ " 1: r # 1 and ϱ " 1 implies r
ω # r and p1 ´ rqω # 1 ´ r and thus prqω ` p1 ´ rqω # 1. In

addition, ϱ " 1 implies 1´1{ϱ " 0, and thus
“
prqω ` p1 ´ rqω

‰1´1{ω # 1 and therefore again !˚
CC

" 0.

Finally, when ϱ " 1, the combination of !˚
CR

# 0 and !˚
CC

" 0 implies !˚
MX

“ !˚
CR

´ !˚
CC

# 0.

In contrast, for ϱ # 1, it is possible for !˚
MX

to be positive or negative.

↭

B.2 Cumulative Prospect Theory (CPT)

Cumulative prospect theory (CPT) as in Tversky and Kahneman (1992) di”ers from OPT only for

gambles with more than one non-zero outcome. In our context, this means they di”er only in the

evaluation of lottery B
1. Hence, the h

˚
AB

and h
˚
CD

indi”erence values are as in OPT, but the h
˚
AB1

indi”erence value is now determined from:

vpMq “ ϖpprqvph˚
AB1q ` pϖppr ` 1 ´ rq ´ ϖpprqqvpMq

!ñ h
˚
AB1 “ v

´1

ˆ
1 ´ pϖppr ` 1 ´ rq ´ ϖpprqq

ϖpprq vpMq
˙

Hence, we now have:
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!˚
CR

" 0 !ñ h
˚
AB

" h
˚
CD

!ñ 1

ϖppq " ϖprq
ϖpprq

!˚
CC

" 0 !ñ h
˚
AB1 " h

˚
CD

!ñ 1 ´ pϖppr ` 1 ´ rq ´ ϖpprqq " ϖprq
!˚

MX
" 0 !ñ h

˚
AB

" h
˚
AB1 !ñ 1

ϖppq " 1 ´ pϖppr ` 1 ´ rq ´ ϖpprqq
ϖpprq

As in OPT, the value function v is irrelevant for the model’s predictions for the sign of !˚
CR

, !˚
CC

,

and !˚
MX

, which are fully determined by the form of the probability weighting function ϖ. Here, we

again derive predictions using the functional form from Tversky and Kahneman (1992).

CPT Result:

(1) ϱ P p0.279, 1q implies !˚
CR

" 0 and !˚
CC

" 0; !˚
MX

can be positive or negative.

(2) ϱ " 1 implies !˚
CR

# 0; !˚
CC

and !˚
MX

can be positive or negative.

Proof: The !˚
CR

equations are the same as in OPT, and thus the proof from the OPT Result still

holds. So we just need to prove that ϱ P p0.279, 1q implies !˚
CC

" 0.

We begin with two preliminary results. First, note that for all ϱ " 0.279,

ϖp1{2q “ p1{2qω
r2p1{2qωs1{ω “

ˆ
1

2

˙
ω´ ω´1

ω

# 1

2
because ϱ ´ ϱ ´ 1

ϱ
" 1.

Second, we prove that

ϖp1 ´ aq ´ ϖp1 ´ bq " ϖpbq ´ ϖpaq for any 0 $ a # b $ 1{2 (B.1)

In words, equation (B.1) says that ϖpqq is steeper for q above 1{2 than for q below 1{2. To prove

this, we rewrite the inequality in equation (B.1) as ϖpaq ` ϖp1 ´ aq " ϖpbq ` ϖp1 ´ bq, which yields

paqω ` p1 ´ aqω
rpaqω ` p1 ´ aqωsp1{ωq " pbqω ` p1 ´ bqω

rpbqω ` p1 ´ bqωsp1{ωq

”
paqω ` p1 ´ aqω

ı1´p1{ωq
"

”
pbqω ` p1 ´ bqω

ı1´p1{ωq

Then because

d
“
pxqω ` p1 ´ xqω

‰1´p1{ωq

dx
“ p1 ´ p1{ϱqq

”
pxqω ` p1 ´ xqω

ı´p1{ωq
ϱpxω´1 ´ p1 ´ xqω´1q

is negative as long as ϱ # 1 and x # 1{2, equation (B.1) follows.
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We now prove that ϱ P p0.279, 1q implies !˚
CC

" 0. The !˚
CC

condition can be written as

!˚
CC " 0 !ñ 1 ` ϖpprq

2
" ϖppr ` 1 ´ rq ` ϖprq

2

Let’s define z such that mintr, pr`1´ru ” pr`z, and note that this implies that maxtr, pr`1´ru “
1´z (so that prq ` ppr`1´rq “ ppr`zq ` p1´zq “ 1`pr). We can then rewrite the !˚

CC
condition

as

!˚
CC " 0 !ñ 1 ` ϖpprq

2
" ϖppr ` zq ` ϖp1 ´ zq

2

The LHS is the y-value for the midpoint of the line segment that connects the points ppr,ϖpprqq and

p1, 1q, while the RHS is the y-value for the midpoint of the line segment that connects the points

ppr`z,ϖppr`zqq and p1´z,ϖp1´zqq, where the x-value for both midpoints is p1`prq{2. Given the

inverse-S shape of ϖpqq for ϱ P p0.279, 1q and the fact that ϖp1{2q # 1{2, the LHS line segment can

intersect ϖpqq for at most one q̄ P ppr, 1q. Moreover, if such a q̄ exists, then pr # q̄ # 1{2, ϖpprq " pr

and ϖpq̄q " q̄.

If such a q̄ does not exist, then the LHS line segment must be everywhere above the RHS line segment,

and thus the !˚
CC

condition holds.

If such a q̄ exists but pr ` z " q̄, then again the LHS line segment must be everywhere above the

RHS line segment, and thus the !˚
CC

condition holds.

Finally, suppose such a q̄ exists but pr ` z # q̄ # 1{2. If ϖ is concave at q̄ and thus concave for

all q # q̄, then ϖppr ` zq ´ ϖpprq # ϖpzq # 1 ´ ϖp1 ´ zq (where the first inequality follows from

the concavity of ϖ for q # q̄ and the second inequality follows from equation (B.1) with a “ 0 and

b “ z # 1{2), and thus the !˚
CC

condition holds. Suppose instead ϖ is convex at q̄ and thus convex

for all q " q̄. Because pr ` z # q̄ # 1{2 and thus 1 ´ pr ´ z " 1{2, we have ϖppr ` zq ´ ϖpprq #
ϖp1 ´ prq ´ ϖp1 ´ pr ´ zq # 1 ´ ϖp1 ´ zq (where the first inequality follows from equation (B.1) and

the second inequality follows from the fact that ϖ is convex for all q " q̄). Hence, again the !˚
CC

condition holds.

This covers all cases, and hence ϱ P p0.279, 1q implies !˚
CC

" 0.

Finally, we note that a symmetric argument does not work for ϱ " 1 because equation (B.1) does

not flip to maintain the symmetry. More precisely, if pr` z " q̄, an analogous argument implies that

!˚
CC

# 0. But when pr`z # q̄, equation (B.1) still implies ϖppr`zq´ϖpprq # ϖp1´prq´ϖp1´pr´zq,
and this creates the possibility that !˚

CC
" 0—in fact, it is easy to generate such examples.

↭
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B.3 Kőszegi-Rabin Loss Aversion Under CPE

We next consider predictions from the Kőszegi-Rabin (2007) model of loss aversion when we ap-

ply choice-acclimating personal equilibrium (CPE). Under CPE, the utility from a lottery X ”
px, qH ; 0, qLq where x " 0 and qH ` qL “ 1 is

UpXq “ qHupxq ´ #qHqLupxq

and the utility from a lottery Y ” px, qH ; y, qM ; 0, qLq where x " y " 0 and qH ` qM ` qL “ 1 is

UpY q “ qHupxq ` qMupyq ´ #qHpqM ` qLqupxq ´ #qM pqL ´ qHqupyq.

where the parameter # is a measure of loss aversion.51 # " 0 implies loss aversion (losses loom larger

than gains), and # # 0 implies gain attraction (gains loom larger than losses).In this formulation,

u is the person’s intrinsic utility over outcomes (e.g., that might be used under EU), where we have

normalized up0q “ 0.

Applied to our context, the indi”erence values are determined from:

upMq “ puph˚
AB

q ´ #pp1 ´ pquph˚
AB

q
upMq “ pruph˚

AB1q ` p1 ´ rqupMq ´ #prp1 ´ prquph˚
AB1q ´ #p1 ´ rqrp1 ´ 2pqupMq

rupMq ´ #rp1 ´ rqupMq “ pruph˚
CD

q ´ #prp1 ´ prquph˚
CD

q

from which we can derive:

h
˚
AB

“ u
´1

ˆ
1

pp1 ´ #p1 ´ pqqupMq
˙

h
˚
AB1 “ u

´1

ˆ
1 ` #p1 ´ rqp1 ´ 2pq
pp1 ´ #p1 ´ prqq upMq

˙

h
˚
CD

“ u
´1

ˆ
1 ´ #p1 ´ rq

pp1 ´ #p1 ´ prqqupMq
˙
.

To ensure this model is well-behaved, we put two restrictions on the range of #. First, if #

becomes too positive, utility can be decreasing in h. For instance, the utility from lottery D can be

written as rpr´#prp1´prqsuphq, and this is increasing in h only if # # 1{p1´prq. To rule out these

perverse cases, we restrict # $ 1. Second, if # becomes too negative, the indi”erence values can be

smaller than M . For instance, h˚
AB

" M requires 1{ppp1 ´ #p1 ´ pqqq " 1 or # " ´1{p. To rule out

these perverse cases, we restrict # % ´1.

51The Kőszegi and Rabin (2007) model has two parameters, a parameter ϱ which captures the relative importance
of gain-loss utility versus intrinsic utility, and a parameter ς that captures loss aversion. However, under CPE these
parameters always appear as the product ϱpς ´ 1q and thus cannot be distinguished, so we define $ ” ϱpς ´ 1q.
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With these restrictions in place:

!˚
CR

" 0 !ñ h
˚
AB

" h
˚
CD

!ñ 1

pp1 ´ #p1 ´ pqq " 1 ´ #p1 ´ rq
pp1 ´ #p1 ´ prqq

!˚
CC

" 0 !ñ h
˚
AB1 " h

˚
CD

!ñ 1 ` #p1 ´ rqp1 ´ 2pq " 1 ´ #p1 ´ rq
!˚

MX
" 0 !ñ h

˚
AB

" h
˚
AB1 !ñ 1

pp1 ´ #p1 ´ pqq " 1 ` #p1 ´ rqp1 ´ 2pq
pp1 ´ #p1 ´ prqq

Note that, much as for the value function under OPT and CPT, the utility function u is irrelevant

for the model’s predictions for the sign of !˚
CR

, !˚
CC

, and !˚
MX

, where in this model these are fully

determined by the value of the parameter #.

Koszegi-Rabin CPE Result:

(1) # P p0, 1s implies !˚
CR

" 0, !˚
CC

" 0, and !˚
MX

# 0.

(2) # P r´1, 0q implies !˚
CR

# 0, !˚
CC

# 0, and !˚
MX

" 0.

Proof: Consider first the !˚
CR

condition, which we can write as:

!˚
CR : 0 !ñ 1

1 ´ #p1 ´ pq :
1 ´ #p1 ´ rq
1 ´ #p1 ´ prq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“ p1 ´ #p1 ´ prqq# ´ p1 ´ #p1 ´ rqq#p

p1 ´ #p1 ´ prqq2 “ p1 ´ pqp# ´ #2q
p1 ´ #p1 ´ prqq2

If # P p0, 1s, then # ´ #2 " 0 and thus dRHS{dr " 0, from which it follows that !˚
CR

" 0 for all

r # 1.

If # P r´1, 0q, then # ´ #2 # 0 and thus dRHS{dr # 0, from which it follows that !˚
CR

# 0 for all

r # 1.

Next consider the !˚
CC

condition, which we can write as:

!˚
CC

: 0 !ñ 1 ` #p1 ´ rqp1 ´ 2pq : 1 ´ #p1 ´ rq

!ñ 2#p1 ´ rqp1 ´ pq : 0

Since the LHS is positive for # P p0, 1s and negative for # P r´1, 0q, !˚
CC

" 0 for any # P p0, 1s and
!˚

CC
# 0 for any # P r´1, 0q.

Finally consider the !˚
MX

condition, which we can write as:

!˚
MX : 0 !ñ 1

1 ´ #p1 ´ pq :
1 ` #p1 ´ rqp1 ´ 2pq

1 ´ #p1 ´ prq
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The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“ p1 ´ #p1 ´ prqqp´#p1 ´ 2pqq ´ p1 ` #p1 ´ rqp1 ´ 2pqq#p

p1 ´ #p1 ´ prqq2

“ #pp ´ 1q ` #2p1 ´ 2pqp1 ´ pq
p1 ´ #p1 ´ prqq2 “ p1 ´ pq# r´1 ` #p1 ´ 2pqs

p1 ´ #p1 ´ prqq2

For # P p0, 1s, p " 1{2 clearly implies dRHS{dr # 0, and when p # 1{2 then # $ 1 implies

´1 ` #p1 ´ 2pq # 0 and thus again dRHS{dr # 0. It follows that !˚
MX

# 0 for any # P p0, 1s.

For # P r´1, 0q, p # 1{2 clearly implies dRHS{dr " 0, and when p " 1{2 then # % ´1 implies

´1 ` #p1 ´ 2pq # 0 and thus again dRHS{dr " 0. It follows that !˚
MX

" 0 for any # P r´1, 0q.

↭

B.4 Bell Disappointment Aversion (Bell DA)

Next, we consider predictions from Bell’s (1985) model of disappointment aversion. Under this model,

the utility from a lottery X ” px1, p1; ...;xN , pN q is

UpXq “
˜

Nÿ

n“1

pnupxnq
¸

´ ς

˜
Nÿ

n“1

pnI
`
upxnq # Ū

˘ `
Ū ´ upxnq

˘
¸
,

where up¨q is an intrinsic utility function, and Ū ” !
N

i“1 piupxiq is the expected intrinsic utility. When

the parameter ς " 0, it reflects a (constant) marginal disutility of disappointment experienced when

one’s realized intrinsic utility is below the expected intrinsic utility. If ς # 0, then ´ς e”ectively

reflects a (constant) marginal utility of elation experienced when one’s realized intrinsic utility is

above the expected intrinsic utility.52

Applied to our context, the indi”erence values for h˚
AB

and h
˚
CD

are determined from:

upMq “ puph˚
AB

q ´ ςp1 ´ pqppuph˚
AB

q ´ 0q

rupMq ´ ςp1 ´ rqprupMq ´ 0q “ pruph˚
CD

q ´ ςp1 ´ prqppruph˚
CD

q ´ 0q

and thus

h
˚
AB “ u

´1

ˆ
1

pp1 ´ ςp1 ´ pqqupMq
˙

and h
˚
CD “ u

´1

ˆ
1 ´ ςp1 ´ rq

pp1 ´ ςp1 ´ prqqupMq
˙

52Bell (1985) further assumes that upxq “ x and has separate parameters for disappointment (d) and elation (e). His
model is equivalent to the version in the text with φ “ d´ e. Loomes and Sugden (1986) also use this formulation, but
they consider nonlinear disappointment and elation.
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Note that for two-outcome lotteries such as our lotteries B, C, and D, the utilities under Bell DA

are equivalent to those under Koszegi-Rabin CPE, where ς replaces #. Hence, we need an analogous

restriction that the range of ς is r´1, 1s.
For the h˚

AB1 indi”erence value, we must carefully assess whether, at the indi”erence value, upMq
is larger or smaller than the expected intrinsic utility pruph˚

AB1q ` p1´ rqupMq because that matters

for the utility from lottery B
1. We can write pruph˚

AB1q ` p1´rqupMq " upMq as uph˚
AB1q " upMq{p.

If we assume that uph˚
AB1q " upMq{p, then the h

˚
AB1 is determined from:

upMq “ pruph˚p1q
AB1q ` p1 ´ rqupMq ´ ςp1 ´ rqppruph˚p1q

AB1q ` p1 ´ rqupMq ´ upMqq
´ςrp1 ´ pqppruph˚p1q

AB1q ` p1 ´ rqupMq ´ 0q

!ñ h
˚p1q
AB1 “ u

´1

ˆ
1 ´ ςpp1 ´ rq

pp1 ´ ςp1 ´ prqqupMq
˙

Note that as long as 1´ςp1´ prq " 0, uph˚
AB1q " upMq{p when 1´ςpp1´ rq " 1´ςp1´ prq, or

ςp1 ´ pq " 0, which holds as long as ς " 0. Since 1 ´ ςp1 ´ prq " 0 for all ς P r0, 1s, it follows that
h

˚
AB1 “ h

˚p1q
AB1 for all ς P r0, 1s.

If we instead assume that uph˚
AB1q # upMq{p, then the h

˚
AB1 is determined from:

upMq “ pruph˚p2q
AB1q ` p1 ´ rqupMq ´ ςrp1 ´ pqppruph˚p2q

AB1q ` p1 ´ rqupMq ´ 0q

!ñ h
˚p2q
AB1 “ u

´1

ˆ
1 ` ςp1 ´ pqp1 ´ rq
pp1 ´ ςrp1 ´ pqq upMq

˙

Note that as long as 1´ςrp1´pq " 0, uph˚
AB1q # upMq{p when 1`ςp1´pqp1´rq # 1´ςrp1´pq,

or ςp1 ´ pq # 0, which holds as long as ς # 0. Since 1 ´ ςrp1 ´ pq " 0 for all ς P r´1, 0s, it follows
that h˚

AB1 “ h
˚p2q
AB1 for all ς P r´1, 0s.

Given these indi”erence values:

!˚
CR

" 0 !ñ h
˚
AB

" h
˚
CD

!ñ 1

1 ´ ςp1 ´ pq " 1 ´ ςp1 ´ rq
1 ´ ςp1 ´ prq

!˚
CC

" 0 !ñ h
˚
AB1 " h

˚
CD

!ñ 1 ´ ςpp1 ´ rq " 1 ´ ςp1 ´ rq if ς P r0, 1s
1 ` ςp1 ´ pqp1 ´ rq

1 ´ ςrp1 ´ pq " 1 ´ ςp1 ´ rq
1 ´ ςp1 ´ prq if ς P r´1, 0s

!˚
MX

" 0 !ñ h
˚
AB

" h
˚
AB1 !ñ 1

1 ´ ςp1 ´ pq " 1 ´ ςpp1 ´ rq
1 ´ ςp1 ´ prq if ς P r0, 1s

1

1 ´ ςp1 ´ pq " 1 ` ςp1 ´ pqp1 ´ rq
1 ´ ςrp1 ´ pq if ς P r´1, 0s

Hence, under Bell DA, the model’s predictions for the sign of!˚
CR

,!˚
CC

, and!˚
MX

are determined

by the value of the parameter ς.

Bell DA Result:
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(1) ς P p0, 1q implies !˚
CR

" 0, !˚
CC

" 0, and !˚
MX

# 0.

(2) ς P p´1, 0q implies !˚
CR

# 0, !˚
CC

# 0, and !˚
MX

" 0.

Proof: For !˚
CR

, the condition is equivalent to that under Koszegi-Rabin CPE, and thus the proof

is the same.

Next consider the !˚
CC

condition.

For ς P r0, 1s, !˚
CC

" 0 if 1 ´ ςpp1 ´ rq " 1 ´ ςp1 ´ rq or ςp1 ´ rqp1 ´ pq " 0, which holds for any

ς P r0, 1s.

For ς P r´1, 0s, !˚
CC

# 0 if

1 ` ςp1 ´ pqp1 ´ rq
1 ´ ςrp1 ´ pq # 1 ´ ςp1 ´ rq

1 ´ ςp1 ´ prq
p1 ` ςp1 ´ pqp1 ´ rqqp1 ´ ςp1 ´ prqq # p1 ´ ςp1 ´ rqqp1 ´ ςrp1 ´ pqq

ςpp1 ´ pqp1 ´ rq ´ p1 ´ prqq ´ ς
2p1 ´ pqp1 ´ rqp1 ´ prq # ´ςp1 ´ prq ` ς

2p1 ´ pqp1 ´ rqr
ςp1 ´ pqp1 ´ rqp1 ´ ςp1 ´ pr ` rqq # 0

which holds for any ς P r´1, 0s.

Finally consider the !˚
MX

condition.

For ς P r0, 1s:
!˚

MX : 0 !ñ 1

1 ´ ςp1 ´ pq " 1 ´ ςpp1 ´ rq
1 ´ ςp1 ´ prq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“ p1 ´ ςp1 ´ prqqpςpq ´ p1 ´ ςpp1 ´ rqqpςpq

p1 ´ ςp1 ´ prqq2 “ ´ς
2
pp1 ´ pq

p1 ´ ςp1 ´ prqq2

Hence, ς P r0, 1s implies dRHS{dr # 0, and thus !˚
MX

# 0 for any r # 1.

For ς P r´1, 0s:
!˚

MX : 0 !ñ 1

1 ´ ςp1 ´ pq " 1 ` ςp1 ´ pqp1 ´ rq
1 ´ ςrp1 ´ pq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“ p1 ´ ςrp1 ´ pqqp´ςp1 ´ pqq ´ p1 ´ ςp1 ´ pqp1 ´ rqqp´ςp1 ´ pqq

p1 ´ ςrp1 ´ pqq2 “ ς
2p1 ´ pq2

p1 ´ ςp1 ´ prqq2

Hence, ς P r´1, 0s implies dRHS{dr " 0, and thus !˚
MX

" 0 for any r # 1.

↭
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B.5 Gul Disappointment Aversion (Gul DA)

We next consider predictions from the Gul (1991) model of disappointment aversion. Under this

model, the utility from a lottery X ” px1, p1; ...;xN , pN q is the UpXq that satisfies

UpXq “
˜

Nÿ

n“1

pnupxnq
¸

´ ς

˜
Nÿ

n“1

pnI pupxnq # UpXqq pUpXq ´ upxnqq
¸
,

where upxq is an intrinsic utility function, and a person experiences disappointment when their

realized intrinsic utility is below the overall utility of the lottery UpXq. As in Bell DA, ς " 0 is

disappointment aversion while ς # 0 is elation-loving. Applying this to binary gambles of the form

X ” px, qH ; 0, qLq, this becomes

UpXq “ qHupxq ´ ςqLpUpXq ´ 0qq !ñ UpXq “ qH

1 ` ςqL
upxq.

Gul imposes ς " ´1, which guarantees that UpXq is increasing in the payo” x for any qL. This

model does not require an upper bound for ς. The indi”erence values h˚
AB

and h
˚
CD

are given by:

upMq “ p

1 ` ςp1 ´ pquph˚
AB

q !ñ h
˚
AB

“ u
´1

ˆ
1 ` ςp1 ´ pq

p
upMq

˙

r

1`εp1´rqupMq “ pr

1`εp1´prquph˚
CD

q !ñ h
˚
CD

“ u
´1

ˆ
1 ` ςp1 ´ prq
pp1 ` ςp1 ´ rqqupMq

˙

For the h˚
AB1 indi”erence value, in principle, we must carefully assess whether, at the indi”erence

value, upMq is larger or smaller than UpB1q (analogous to what we did for Bell DA). However, because

h
˚
AB1 is determined by the condition upMq “ UpB1q, we know that upMq “ UpB1q at H “ h

˚
AB1 . It

follows that, at H “ h
˚
AB1 , we have:

UpB1q “ prupHq ` p1 ´ rqupMq ´ ςrp1 ´ pqpUpB1q ´ 0q

or

UpB1q “ pr

1 ` ςrp1 ´ pqupHq ` 1 ´ r

1 ` ςrp1 ´ pqupMq.

Then h
˚
AB1 is derived from

upMq “ pr

1 ` ςrp1 ´ pquph˚
AB1q ` 1 ´ r

1 ` ςrp1 ´ pqupMq !ñ h
˚
AB1 “ u

´1

ˆ
1 ` ςp1 ´ pq

p
upMq

˙

Notice that h˚
AB1 “ h

˚
AB

and thus!˚
MX

“ 0 (a well known property of Gul DA) and thus!˚
CR

“ !˚
CC

.
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Hence, there is only one remaining condition to consider:

!˚
CR

“ !˚
CC

" 0 !ñ h
˚
AB

“ h
˚
AB1 " h

˚
CD

!ñ 1 ` ςp1 ´ pq " 1`εp1´prq
1`εp1´rq

Hence, under Gul DA, the model’s predictions for the sign of!˚
CR

, !˚
CC

, and!˚
MX

are determined

by the value of the parameter ς.

Gul DA Result:

(1) ς " 0 implies !˚
CR

“ !˚
CC

" 0 and !˚
MX

“ 0.

(2) ς P p´1, 0q implies !˚
CR

“ !˚
CC

# 0, and !˚
MX

“ 0.

Proof: The !˚
CR

condition is:

!˚
CR : 0 !ñ 1 ` ςp1 ´ pq : 1 ` ςp1 ´ prq

1 ` ςp1 ´ rq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“ p1 ` ςp1 ´ rqqp´ςpq ´ p1 ` ςp1 ´ prqqp´ςq

p1 ` ςp1 ´ rqq2 “ pς ` ς
2qp1 ´ pq

p1 ` ςp1 ´ rqq2

Hence, ς " 0 implies dRHS{dr " 0 and thus !˚
CR

“ !˚
CC

" 0, while ς P p´1, 0q implies dRHS{dr #
0 and thus !˚

CR
“ !˚

CC
# 0.

↭

B.6 Cautious Expected Utility (CEU)

We next consider the implications of the cautious expected utility (CEU) model introduced by Cerreia-

Vioglio et al. (2015). Unlike the models above, their focus is a representation theorem and not a

parameterized model, but firm predictions for our context follow from their axioms.

To illustrate, suppose we fix H “ h
˚
AB

so that B „ A. Because lottery A is a sure amount,

their key axiom of negative certainty independence (NCI) implies that rB ` p1´ rq0 Á rA` p1´ rq0
for any r P p0, 1q. Because rB ` p1 ´ rq0 “ D and rA ` p1 ´ rq0 “ C, CEU permits a CRP (i.e.,

!˚
CR

" 0) but not an RCRP. NCI also implies (see page 697 of Cerreia-Vioglio et al. (2015)) that

rB ` p1 ´ rqA „ B for any r P p0, 1q. Because rB ` p1 ´ rqA “ B
1, CEU implies A „ B „ B

1 and

thus !˚
MX

“ 0. Finally, !˚
MX

“ 0 implies !˚
CC

“ !˚
CR

.

To summarize, when the predictions of CEU di”er from EU, those predictions are!˚
CC

“ !˚
CR

" 0

and !˚
MX

“ 0, i.e., the CRP-CCP-!MXP pattern.
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B.7 Puri Simplicity Preferences

Finally, we consider the implications of the model of simplicity preferences introduced by Puri (2024).

Under this model, the utility from a lottery X ” px1, p1; ...;xN , pN q is

UpXq “
Nÿ

n“1

pnupxnq ´ φpNq.

The first term is a standard EU term, and φpNq is a complexity cost term that is increasing in N—

i.e., lotteries with more possible outcomes have a larger complexity cost. Here, we derive predictions

for our context under the assumption that φp1q # φp2q # φp3q.
To derive predictions, it is convenient to fix the parameters pM,p, rq and then define EUpX|hq

to be the expected utility of lottery X P tB,B
1
, Du as a function of h. Also, recall that, for any h,

EUpCq ´ EUpD|hq “ EUpAq ´ EUpB1|hq “ rpEUpAq ´ EUpB|hqq.
Under this model, h˚

CD
must satisfy EUpCq ´φp2q “ EUpD|h˚

CD
q ´φp2q and therefore EUpCq “

EUpD|h˚
CD

q. This in turn implies EUpAq “ EUpB|h˚
CD

q and thus EUpAq ´ φp1q " EUpB|h˚
CD

q ´
φp2q. It follows that h˚

AB
" h

˚
CD

and thus !˚
CR

" 0. Similarly, it also implies EUpAq “ EUpB1|h˚
CD

q
and thus EUpAq ´ φp1q " EUpB1|h˚

CD
q ´ φp3q. It follows that h˚

AB1 " h
˚
CD

and thus !˚
CC

" 0.

Under this model, h˚
AB

must satisfy EUpAq ´φp1q “ EUpB|h˚
AB

q ´φp2q and therefore EUpAq #
EUpB|h˚

AB
q. Since B1 is a mixture of A and B, we must have EUpAq # EUpB1|h˚

AB
q # EUpB|h˚

AB
q

and thus EUpB1|h˚
AB

q ´ φp3q # EUpB|h˚
AB

q ´ φp2q. It follows that EUpAq ´ φp1q " EUpB1|h˚
AB

q ´
φp3q and thus h˚

AB1 " h
˚
AB

and !˚
MX

# 0.

To summarize, if φp1q # φp2q # φp3q, then Puri simplicity preferences predict!˚
CR

" 0, !˚
CC

" 0,

and !˚
MX

# 0, i.e., the CRP-CCP-RMXP pattern.

27



C The Impact of Noise on Valuations and Choices

In Section 2.5, we discuss the impact of noise on valuation tasks and binary choice tasks, and the

inferential challenges that arise as a result. This appendix formalizes the intuition in that section by

replicating and expanding on the theoretical results in McGranaghan et al. (2024).

We assume that the same underlying preferences drive behavior for both valuation tasks and

binary choice tasks. Using the notation from Section 2.2, a person will have three underlying indif-

ference values h˚
AB

, h˚
AB1 , and h

˚
CD

for a fixed pp, r,Mq that satisfy:

• Prefer A over B if and only if H # h
˚
AB

,

• Prefer A over B1 if and only if H # h
˚
AB1 , and

• Prefer C over D if and only if H # h
˚
CD

.

We can then characterize that person’s CR, CC, and MX preferences by !˚
CR

” h
˚
AB

´h
˚
CD

, !˚
CC

”
h

˚
AB1 ´ h

˚
CD

, and !˚
MX

” h
˚
AB

´ h
˚
AB1 . EU implies !˚

CC
“ !˚

CR
“ !˚

MX
“ 0.

C.1 The Impact of Noise on Valuations

In Section 2.5, we provide an intuitive argument for how paired valuation tasks might yield unbiased

inference even in the presence of noise. Here, we provide a formal argument.

To combine a participant’s underlying preferences with noise to generate their stated valuations,

we begin with an assumption that is more general than the one used in Section 2.5:

Assumption 1v: Impact of Noise on Valuations

A person’s stated valuations phAB, hAB1 , hCDq are hAB ” $ph˚
AB

, ↼ABq, hAB1 ” $ph˚
AB1 , ↼AB1q,

and hCD ” $ph˚
CD

, ↼CDq, where p↼AB, ↼AB1 , ↼CDq are noise draws from a continuous joint dis-

tribution with convex support, and $ is increasing in both arguments with $ph, 0q “ h for all

h.

In Assumption 1v, the function $ permits a variety of models for how a person’s underlying indi”er-

ence points combine with choice noise to generate their stated valuations. We highlight two special

cases of Assumption 1v:

Assumption 2a: $ph, ↼q “ h ` ↼, and Ep↼ABq “ Ep↼AB1q “ Ep↼CDq “ 0.

Assumption 2b: $ph, ↼q is potentially nonlinear in h and ↼, but ↼AB

d“ kAB↼CD for some

kAB " 0, ↼AB1
d“ kAB1↼CD for some kAB1 " 0, and ↼CD is symmetric about 0.
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Assumption 2a is the assumption we use in Section 2.5 and represents the simple case in which

stated valuations are given by the true underlying preference plus a mean-zero error term. Assumption

2b is less straightforward at first glance, but it is consistent with assumptions researchers frequently

use when analyzing choice data, where they model noise as a symmetric additive perturbation of

utility in the spirit of McFadden (1974, 1981). To illustrate, consider the following example:

Example: Expected Utility and Prospect Theory

Suppose that a person evaluates a lottery px, qq with x " 0 as ϖpqqupxq, and evaluates a lottery

px, q; y, sq with x " y " 0 as ϖpqqupxq ` wpq, squpyq. This formulation reduces to EU when

ϖpqq “ q, wpq, sq “ s, and upxq is a Bernoulli utility function. This formulation reduces to CPT

when ϖpqq is a probability weighting function, wpq, sq “ ϖpq ` sq ´ ϖpqq, and upxq is a value

function defined over gains and losses. Finally, this formulation reduces to OPT when ϖpqq is a

probability weighting function, wpq, sq “ ϖpsq, and upxq is a value function defined over gains

and losses.

With this formulation, the underlying indi”erence points satisfy

upMq “ ϖppquph˚
ABq ô h

˚
AB “ u

´1

ˆ
1

ϖppqupMq
˙

upMq “ ϖpprquph˚
AB1q ` wppr, 1 ´ rqupMq ô h

˚
AB1 “ u

´1

ˆ
1 ´ wppr, 1 ´ rq

ϖpprq upMq
˙

ϖprqupMq “ ϖpprquph˚
CDq ô h

˚
CD “ u

´1

ˆ
ϖprq
ϖpprqupMq

˙

Now suppose we incorporate additive utility noise in the spirit of McFadden (1974, 1981) by

assuming that the stated valuations satisfy

upMq “ ϖppquphABq ` ↽AB ô hAB “ u
´1

ˆ
uph˚

ABq ´ ↽AB

ϖppq

˙

upMq “ ϖpprquphAB1q ` wppr, 1 ´ rqupMq ` ↽AB1 ô hAB1 “ u
´1

ˆ
uph˚

AB1q ´ ↽AB1

ϖpprq

˙

ϖprqupMq “ ϖpprquphCDq ` ↽CD ô hCD “ u
´1

ˆ
uph˚

CDq ´ ↽CD

ϖpprq

˙

where ↽AB, ↽AB1 , and ↽CD reflect additive utility noise.53 When applying this approach, it is

common to further assume that ↽CD has some distribution that is symmetric about 0 (e.g.,

a mean-zero normal or logistic distribution), and that ↽AB

d“ k
1
AB

↽CD and ↽AB1
d“ k

1
AB1↽CD for

some k
1
AB

" 0 and k
1
AB1 " 0 (e.g., when the error terms all have the same distributional form

but are permitted to have di”erent variances). If so, then this formulation fits Assumption

53The latter equations use p1{ϑppqqupMq “ uph˚
AB

q, pp1 ´ wppr, 1 ´ rqq{ϑpprqqupMq “ uph˚
AB1 q, and

pϑprq{ϑpprqqupMq “ uph˚
CD

q.
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2b with $ph, ↼q “ u
´1puphq ´ ↼q, where ↼AB “ k

1
AB

↽CD{ϖppq, ↼AB1 “ k
1
AB1↽CD{ϖpprq, and

↼CD “ ↽CD{ϖpprq. Finally, EU with additive utility noise that is i.i.d. across the AB, AB1, and

CD choices (so k
1
AB

“ k
1
AB1 “ 1) implies ↼AB “ r↼CD and ↼AB1 “ ↼CD.

Proposition 1v describes when unbiased tests of the null of !˚
Z

“ 0, Z P tCR,CC,MXu, are possible
using paired valuation tasks and Assumption 2a or 2b.

Proposition 1v (Paired Valuation Tasks Can Yield Unbiased Tests): Consider a person who provides

stated valuations (hAB, hAB1 , hCDq.

(1) Under Assumption 2a, Ep!Zq “ !˚
Z
for all Z P tCR,CC,MXu.

(2) Under Assumption 2b, Prp!Z " 0q “ Prp!Z # 0q “ 1{2 for all Z P tCR,CC,MXu.

The proof and intuition for Proposition 1 are virtually the same as those for Proposition 2 in

McGranaghan et al. (2024), and thus we omit them here. Part (1) establishes that we can test the

null of !˚
Z

“ 0 under Assumption 2a using a means test. Part (2) establishes that we can test the

null of !˚
Z

“ 0 under Assumption 2b using a sign test that tests whether the observed proportions

of !Z " 0 and !Z # 0 are the same.54 These are the two tests reported in Table A.4.

C.2 The Impact of Noise on Choices

In Section 2.5, we describe how noise can make it problematic to infer preferences when comparing

behavior across binary choice tasks. We provide a formal argument here. To model how a partici-

pant’s underlying preferences combine with noise to generate their choices in the three binary choice

tasks, we use the following alternative to Assumption 1v:

Assumption 1c: Impact of Noise on Choices

A person’s realized indi!erence points are the phAB, hAB1 , hCDq described in Assumption 1v.

Then:

• In an AB choice task, the person chooses A ” pM, 1q over B ” pH, pq if and only if

H $ hAB ” $ph˚
AB

, ↼ABq,
54Our formal test uses the following logic. If Prp”Z ! 0q “ Prp”Z " 0q “ 1{2 for every observation, the likelihood

of observing at most n instances of ”Z ! 0 out of N observations is equal to Gpn,Nq, where G denotes the cumulative
distribution function for a binomial distribution with a 50 percent success rate. Hence, if we observe n` instances
of ”Z ! 0 and n´ instances of ”Z " 0, the p-value for a two-sided sign test under the null of ”˚

Z
“ 0 is 2 ˚

Gpmintn`, n´u, n` ` n´q.
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• In an AB
1 choice task, the person chooses A ” pM, 1q over B

1 ” pH, p;M, 1 ´ rq if and

only if H $ hAB1 ” $ph˚
AB1 , ↼AB1q,

• In a CD choice task, the person chooses C ” pM, rq over D ” pH, prq if and only if

H $ hCD ” $ph˚
CD

, ↼CDq.

In a choice task, the observed data comes in the form of the proportion of participants who choose

each option. Under Assumption 1c, the relevant proportions are:

PrpA|ABq “ PrpH # hABq, PrpA|AB1q “ PrpH # hAB1q, and PrpC|CDq “ PrpH # hCDq.

Proposition 2 establishes conditions under which paired choice tasks yield biased tests of the null of

!˚
Z

“ 0, Z P tCR,CC,MXu.

Proposition 2 (Paired Choice Tasks Can Yield Biased Tests): Consider a person who has h
˚
AB

“
h

˚
AB1 “ h

˚
CD

” h
˚ and thus !˚

CR
“ !˚

CC
“ !˚

MX
“ 0. Suppose that ↼AB

d“ kAB↼CD and

↼AB1
d“ kAB1↼CD for some kAB " 0 and kAB1 " 0, and define ⇀ ” Prp↼AB # 0q “ Prp↼AB1 #

0q “ Prp↼CD # 0q.

(1) If h˚ ´ H " 0 and thus the person has A ! B, A ! B
1, and C ! D, then:

(a) kAB # 1 implies PrpA|ABq " PrpC|CDq " ⇀ (CRE); kAB " 1 implies PrpC|CDq "
PrpA|ABq " ⇀ (RCRE); and kAB “ 1 implies PrpA|ABq “ PrpC|CDq “ ⇀ (!CRE);

(b) kAB1 # 1 implies PrpA|AB1q " PrpC|CDq " ⇀ (CCE); kAB1 " 1 implies PrpC|CDq "
PrpA|AB1q " ⇀ (RCCE); and kAB1 “ 1 implies PrpA|AB1q “ PrpC|CDq “ ⇀ (!CCE);

and

(c) kAB # kAB1 implies PrpA|ABq " PrpA|AB1q " ⇀ (MXE); kAB " kAB1 implies PrpA|AB
1q "

PrpA|ABq " ⇀ (RMXE); and kAB “ kAB1 implies PrpA|ABq “ PrpA|AB1q “ ⇀ (!MXE).

(2) If h˚ ´ H # 0 and thus the person has B ! A, B1 ! A, and D ! C, then:

(a) kAB # 1 implies PrpA|ABq # PrpC|CDq # ⇀ (RCRE); kAB " 1 implies PrpC|CDq #
PrpA|ABq # ⇀ (CRE); and kAB “ 1 implies PrpA|ABq “ PrpC|CDq “ ⇀ (!CRE);

(b) kAB1 # 1 implies PrpA|AB1q # PrpC|CDq # ⇀ (RCCE); kAB1 " 1 implies PrpC|CDq #
PrpA|AB1q # ⇀ (CCE); and kAB1 “ 1 implies PrpA|AB1q “ PrpC|CDq “ ⇀ (!CCE); and

(c) kAB # kAB1 implies PrpA|ABq # PrpA|AB1q # ⇀ (RMXE); kAB " kAB1 implies PrpA|AB1q #
PrpA|ABq # ⇀ (MXE); and kAB “ kAB1 implies PrpA|ABq “ PrpA|AB1q “ ⇀ (!MXE).

(3) If h˚ ´H “ 0 and thus the person has A „ B „ B
1 and C „ D, then PrpA|ABq “ PrpA|AB1q “

PrpC|CDq “ ⇀ for all kAB and kAB1 .
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Again, the proof and intuition for Proposition 2 are virtually the same as the proof and intuition

for Proposition 1 in McGranaghan et al. (2024), and thus we omit them here. Also, note that

Proposition 2 holds under Assumption 2b, and it would also hold under Assumption 2a if in addition

to Ep↼ABq “ Ep↼AB1q “ Ep↼CDq “ 0 we also have ↼AB

d“ kAB↼CD and ↼AB1
d“ kAB1↼CD for some

kAB " 0 and kAB1 " 0. Hence, paralleling Corollary 1 in McGranaghan et al., paired choice tasks

can yield biased tests while paired valuation tasks yield unbiased tests under the same assumptions

about noise.

Beyond replicating the CRE result from Proposition 1 in McGranaghan et al. (2024) and extending

it the CCE and MXE experiments, Proposition 2 also illustrates that the potential for misleading

conclusions is even greater when attempting to identify preference patterns by comparing behavior

across three binary choices. In particular, even when the true underlying preferences involve !CRP,

!CCP, and !MXP, many di”erent patterns can emerge across the three choice tasks depending

on the values for kAB and kAB1 and the experimenter-chosen parameter H. For instance, if kAB1 #
kAB # 1, then H # h

˚ would lead to pattern CRE-CCE-RMXE, while H " h
˚ would lead to pattern

RCRE-RCCE-MXE. Alternatively, if kAB # 1 # kAB1 , then H # h
˚ would lead to pattern CRE-

RCCE-MXE, while H " h
˚ would lead to pattern RCRE-CCE-RMXE. Many other patterns are

possible, and the only cases where the prediction would be the pattern !CRE-!CCE-!MXE that

corresponds to underlying preferences are the knife-edge cases where either distance to indi”erence

is zero, h˚ ´ H “ 0, or di”erential noise is absent, kAB “ kAB1 “ 1.

Proposition 2 establishes that choice tasks can yield a wide set of patterns when the true under-

lying preferences are !CRP-!CCP-!MXP. The same can hold even when people have di”erent

underlying preferences. To illustrate, consider behavior under Assumption 2a with the additional

assumption of ↼AB

d“ kAB↼CD and ↼AB1
d“ kAB1↼CD for some kAB " 0 and kAB1 " 0. Under these

assumptions, we can write the choice proportions as follows:

PrpA|ABq “ PrpH # h
˚
AB

` ↼ABq “ Pr
´

´↼CD # 1
kAB

ph˚
AB

´ Hq
¯

PrpA|AB1q “ PrpH # h
˚
AB1 ` ↼AB1q “ Pr

´
´↼CD # 1

k
AB1 ph˚

AB1 ´ Hq
¯

PrpC|CDq “ PrpH # h
˚
CD

` ↼CDq “ Pr p´↼CD # h
˚
CD

´ Hq

We next define h̄
˚
CR

” ph˚
AB

` h
˚
CD

q{2, h̄˚
CC

” ph˚
AB1 ` h

˚
CD

q{2, and h̄
˚
MX

” ph˚
AB

` h
˚
AB1q{2, which

are the average indi”erence values for the three paired valuations. Using these, and recalling for

choices that CRE ´ RCRE “ PrpA|ABq ´ PrpC|CDq, CCE ´ RCCE “ PrpA|AB1q ´ PrpC|CDq,
and MXE ´ RMXE “ PrpA|ABq ´ PrpA|AB1q, we can derive predicted behavior in choice tasks:

CRE ´ RCRE “ Pr p´↼CD # h
˚
CD

´ H ` %CRq ´ Pr p´↼CD # h
˚
CD

´ Hq
CCE ´ RCCE “ Pr p´↼CD # h

˚
CD

´ H ` %CCq ´ Pr p´↼CD # h
˚
CD

´ Hq
MXE ´ RMXE “ Pr

`
´↼AB1 # h

˚
AB1 ´ H ` %MX

˘
´ Pr

`
´↼AB1 # h

˚
AB1 ´ H

˘
(C.1)
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where
%CR “ 0.5

´
1

kAB

` 1
¯
!˚

CR
`

´
1

kAB

´ 1
¯

ph̄˚
CR

´ Hq
%CC “ 0.5

´
1

k
AB1 ` 1

¯
!˚

CC
`

´
1

k
AB1 ´ 1

¯
ph̄˚

CC
´ Hq

%MX “ 0.5
´
k
AB1
kAB

` 1
¯
!˚

MX
`

´
k
AB1
kAB

´ 1
¯

ph̄˚
MX

´ Hq
(C.2)

Hence, whether one’s choices exhibit a CRE, CCE, or MXE depends on whether %CR, %CC , or

%MX are positive or negative. In the the knife-edge cases where h̄
˚
Z

´H “ 0 for Z P tCR,CC,MXu
or kAB “ kAB1 “ 1, %CR9!˚

CR
, %CC9!˚

CC
, and %MX9!˚

MX
. Generalizing our earlier conclusion,

in these knife-edge cases, choices will reveal the qualitative direction of underlying preferences.

In contrast, when h̄
˚
Z

´ H ‰ 0 for Z P tCR,CC,MXu and kAB and kAB1 are not equal to

one, then we have di”erential noise, and whether one exhibits a CRE, CCE, or MXE also depends

on the relevant distance to indi!erence, i.e., h̄˚
CR

´ H, h̄˚
CC

´ H, or h̄
˚
MX

´ H. Indeed, if we fix

the experimental parameters pM,p, rq and the associated underlying preferences ph˚
AB

, h
˚
AB1 , h˚

CD
q,

we can use equation (C.2) to derive predicted behavior as a function of the experimenter-chosen

parameter H:

CRE ´ RCRE " 0 ô %CR " 0 ô

$
’’’’&

’’’’%

H " h̄
˚
CR

´ kAB ` 1

2pkAB ´ 1q!
˚
CR

if kAB " 1

H # h̄
˚
CR

` kAB ` 1

2p1 ´ kABq!
˚
CR

if kAB # 1

!˚
CR

" 0 if kAB “ 1

CCE ´ RCCE " 0 ô %CC " 0 ô

$
’’’’&

’’’’%

H " h̄
˚
CC

´ kAB1 ` 1

2pkAB1 ´ 1q!
˚
CC

if kAB1 " 1

H # h̄
˚
CC

` kAB1 ` 1

2p1 ´ kAB1q!
˚
CC

if kAB1 # 1

!˚
CC

" 0 if kAB1 “ 1

MXE ´ RMXE " 0 ô %MX " 0 ô

$
’’’’&

’’’’%

H # h̄
˚
MX

` kAB1 ` kAB

2pkAB1 ´ kABq!
˚
MX

if kAB # kAB1

H " h̄
˚
MX

´ kAB1 ` kAB

2pkAB ´ kAB1q!
˚
MX

if kAB " kAB1

!˚
MX

" 0 if kAB “ kAB1

Note that if the experimenter chooses H “ h̄
˚
CR

, then participants’ CRE ´ RCRE will reveal the

sign of their underlying !˚
CR

. An analogous point holds when the experimenter chooses H “ h̄
˚
CC

or H “ h̄
˚
MX

. However, without observing valuations, it is hard for the experimenter to select these

H’s. Moreover, if the experimenter is trying to use choices to identify patterns across the three

preferences, a single H may not be su&cient to accurately infer all three preferences.

Finally, we highlight how, as the experimenter varies the experimental parameter H, a variety

of biased patterns can emerge. For example, suppose h
˚
AB

“ 36, h
˚
AB1 “ 34, and h

˚
CD

“ 30, in

which case underlying preferences have the pattern CRP, CCP, MXP. If in addition kAB “ 0.5 while
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kAB1 “ 1.5, participants would exhibit a CRE for H # 42, a CCE for H " 22, and an MXE for

H # 37. Hence, for H P p22, 37q, participants would exhibit the CRE-CCE-MXE pattern consistent

with their underlying preferences. However, for H outside of this range we might observe the patterns

CRE-RCCE-MXE, CRE-CCE-RMXE, or RCRE-CCE-RMXE.

The message is clear: If one wants to learn about patterns of CR-CC-MX preferences so as to be

able to assess models of risk preferences, then using choice tasks will be problematic. In contrast,

under the same assumptions as the analysis here, valuation tasks can be used to get unbiased measures

of the underlying preferences !˚
CR

, !˚
CC

, and !˚
MX

.

C.3 Connecting Stage 1 Valuations and Stage 2 Choices

Our discussion in Appendix C.1 and C.2 assumes that the same underlying preferences drive behavior

for both valuation tasks and choice tasks, and thus there should be a strong connection between the

two. In Section 4.5 of the main paper, we provide some evidence on that connection. Here, we provide

the underlying theory on which that evidence is based. Again, this follows a similar treatment in

McGranaghan et al. (2024).

Specifically, we consider Assumption 2a with the additional assumptions that ↼AB

d“ kAB↼CD and

↼AB1
d“ kAB1↼CD for some kAB " 0 and kAB1 " 0. In this case, equations C.1 and C.2 characterize the

predictions for stage 2 choices as a function of underlying indi”erence values h
˚
AB

, h˚
AB1 , and h

˚
CD

.

At the same time, Proposition 1 part 1 establishes that a participant’s stage 1 valuations hAB, hAB1 ,

and hCD are unbiased measures of those underlying indi”erence values.

Hence, we conduct the following empirical analyses. First, we either (i) use each participant’s

stage 1 stated valuations hAB, hAB1 , and hCD to directly generate (noisy) empirical measures !CR,

!CC , !MX , h̄CR, h̄CC , and h̄MX , or (ii) use each participant’s stage 1 stated valuations hAB, hAB1 ,

and hCD combined with our decomposition from Section 4.4 to generate posterior measures of an in-

dividual’s underlying preferences Er!˚
CR

|stage1s, Er!˚
CC

|stage1s, Er!˚
MX

|stage1s, Erh̄˚
CR

|stage 1s,
Erh̄˚

CC
|stage 1s, and Erh̄˚

MX
|stage 1s (see Appendix D.4 for details). We then test the following

predictions from equations C.1 and C.2:

(1) A person’s observed CRE ´ RCRE, CCE ´ RCCE, and MXE ´ RMXE at stage 2 should

depend positively on their associated stage 1 value di”erence !CR, !CC , !MX .

(2) With one caveat, a person’s observed CRE ´RCRE, CCE ´RCCE, and MXE ´RMXE at

stage 2 should depend positively on their associated distance to indi”erence h̄CR ´H, h̄CC ´H,

h̄MX ´H when the noise is more impactful for the second choice (the CD choice for CRE and

CCE, the AB
1 choice for MXE), and should depend negatively on their associated distance to

indi”erence when the noise is more impactful for the first choice. The caveat is that, while this
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prediction holds when the magnitude of the relevant distance to indi”erence is not too large,

when that magnitude gets large enough (positive or negative), the relationship reverses because

Pr p´↼Z # h
˚
Z

´ Hq approaches zero (as in Figure 7 of McGranaghan et al. (2024)).

When we test these predictions, we increase power by combining data across di”erent combi-

nations of pp, rq. Because for each preference the impact of the value di”erence or the distance to

indi”erence is larger for larger p, in our empirical analyses we multiply these terms by p to make

them more comparable across di”erent values for p.

We visually assess prediction (1) in Figure 7 and we visually assess prediction (2) in Supple-

mentary Figure C.1. Panels A-C of Supplementary Table C.1 provide corresponding formal tests

via regressions of CRE ´ RCRE, CCE ´ RCCE, and MXE ´ RMXE from stage 2 on the cor-

responding values of !Z and h̄Z ´ H from stage 1 (in both cases normalized by p). In each panel,

four di”erent specifications are provided: (1) ordinary least squares using the full sample of 8408

stage 2 observations; (2) ordinary least squares using samples of 4204 stage 2 observations for which

multiple elicitations of relevant h valuations were conducted at stage 1; (3) two-stage least squares

using samples of 4204 stage 2 observations for which multiple elicitations of relevant h valuations

were conducted at stage 1 and instrumenting for !Z and h̄Z ´ H with the alternate elicitation’s

values, which accounts for potential measurement error in !Z and h̄Z ´H; (4) ordinary least squares

using the full sample of 8408 stage 2 observations, but replacing !Z and h̄Z ´ H with the posterior

expectations of preference given stage 1 behavior (i.e., Er!˚
Z

|stage 1s Erh̄˚
Z

´ H|stage 1s.
Figure 7 and Supplementary Table C.1 show substantial support for prediction (1) with significant

linkages between values of !Z and corresponding di”erences in choice probabilities for CR, CC, and

MX problems across all specifications. Supplementary Figure C.1 and Supplementary Table C.1

also document the relevance of prediction (2) for all three problems. For CR problems, the data

show a significant positive relationship between h̄CR ´H and CRE´RCRE across all specifications,

indicating that noise is more impactful for the CD choice than the AB choice. For CC problems the

data using raw valuations in columns (1) through (3) show limited relationship between h̄CC ´ H

and CCE ´ RCCE. However, when using the posterior expectation of preferences in column (4),

the data show a significant negative relationship between Erh̄˚
CC

|stage 1s ´ H and CCE ´ RCCE,

indicating that noise is more impactful for the AB
1 choice than the CD choice. For MX problems

the data show a significant positive relationship between h̄MX ´ H and MXE ´ RMXE across all

specifications, indicating that noise is more impactful for the AB
1 choice than the AB choice. All

three problems show the hallmarks of di”erential noise and the combined data suggest that noise has

the most impact on AB
1 choices, followed by CD choices, followed by AB choices.

Interestingly, these conclusions di”er from the predictions of EU with additive i.i.d utility noise.

In particular, Example 1 from Appendix C.1 derives that, under EU with additive i.i.d. utility noise,
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↼AB “ r↼CD and ↼AB1 “ ↼CD. In words, under EU with additive i.i.d utility noise, the impact of

noise on the AB
1 and CD choices should be the same, and both should be larger than the impact of

noise on the AB choice.

36



Figure C.1: Predicting Stage 2 Results using Stage 1 Distance to Indi”erence

Panel A: CRE ´ RCRE

 -
50

-4
0

-3
0

-2
0

-1
0

0
10

20
30

40
50

 
C

R
E 

– 
R

C
R

E

 -30 -20 -10 0 10 20 30  
Stage 1 Distance to Indifference: p(hC̅R – H)

Panel D: CRE ´ RCRE
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Decomposed Preferences: p(E[h*̅CR|stage 1] – H)

Panel B: CCE ´ RCCE
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Panel E: CCE ´ RCCE
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Decomposed Preferences: p(E[h*̅CC|stage 1] – H)

Panel C: MXE ´ RMXE
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Panel F: MXE ´ RMXE
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Decomposed Preferences: p(E[h*̅MX|stage 1] – H)

Notes: Figure relates individual stage 1 measures of h̄CR ´ H, h̄CC ´ H, and h̄MX ´ H to stage 2 measures of
CRE ´ RCRE, CCE ´ RCCE, and MXE ´ RMXE, respectively. Panels A-C use raw stage 1 responses. Panels
D-F use the estimated population distribution of preferences from the decomposition in Section 4.4 combined with
a participant’s raw stage 1 valuations to generate posterior preference measures Erh̄˚

CR
|stage 1s, Erh̄˚

CC
|stage 1s, and

Erh̄˚
MX

|stage 1s for that participant. For each x-axis, one hundred equally sized bins are constructed with approximately
84 observations per bin for the CR and CC panels and approximately 42 observations for the MX panels. Within each
bin, the value of stage 2 choice di#erences is calculated to construct the y-axes. Due to a large of observations at some
values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make valuations comparable across
pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed value of the measure is predicted to yield
a larger stage 2 e#ect the larger is p (see Appendix C.3 for details).
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Table C.1: Regressions Predicting Stage 2 Binary Choices Using Stage 1 Valuations

(1) (2) (3) (4)

Full Sample
Multiple

Observations
Available

2SLS
Decomposed
Preferences

Panel A. CRE ´ RCRE P t´1, 0, 1u

p!CR 1.07 1.08 2.60 2.77
(0.07) (0.09) (0.26) (0.16)

pph̄CR ´ Hq 0.40 0.30 0.20 0.32
(0.07) (0.09) (0.12) (0.08)

Outcome Mean 10.45 10.04 10.04 10.45

Panel B. CCE ´ RCCE P t´1, 0, 1u

p!CC 0.96 0.87 2.92 3.26
(0.07) (0.09) (0.36) (0.18)

pph̄CC ´ Hq ´0.03 ´0.01 ´0.16 ´0.46
(0.07) (0.09) (0.14) (0.08)

Outcome Mean ´5.77 ´4.69 ´4.69 ´5.77

Panel C. MXE ´ RMXE P t´1, 0, 1u

p!MX 0.80 0.93 3.17 3.00
(0.07) (0.10) (0.44) (0.23)

pph̄MX ´ Hq 0.39 0.43 0.62 0.65
(0.06) (0.07) (0.11) (0.07)

Outcome Mean 16.00 15.91 15.91 16.00

Individuals 2102 1051 1051 2102
Observations 8,408 4,204 4,204 8,408

Notes: Table presents linear regressions of individuals’ stage 2 decisions on stage 1 measures of their”Z and h̄Z´H

for Z P tCR,CC,MXu. Panel A presents results for CR experiments, where the outcome is 1 if the participant
chose A and D (CRE), ´1 if they chose B and C (RCRE), and zero otherwise. Panel B presents results for CC
experiments, where the outcome is 1 if the participant chose A and D (CCE), ´1 if they chose B

1 and C (RCRE),
and zero otherwise. Panel C presents results for MX experiments, where the outcome is 1 if the participant chose A
and B

1 (MXE), ´1 if they chose B and A (RMXE), and zero otherwise. Columns (1)-(3) use raw stage 1 responses.
Column (1) presents the full sample results for all four pp, rq combinations that participants saw. For panel C, we
use the valuations h

1
AB or h

1
AB1 for the half of pp, rq that they exist for, and hAB or hAB1 otherwise. Column (2)

restricts the sample to only the half of pp, rq conditions for which which we have multiple measures of all three
valuations. Column (3) leverages these multiple observations to implement instrumental variable regressions using
two-stage least squares, where we instrument for p” and pph̄´Hq with their duplicate measures. For Column (4),
we use the estimated population distribution of preferences from the decomposition in Section 4.4 combined with
a participant’s raw stage 1 valuations to generate posterior preference measures Er”˚

Z
|stage 1s and Erh̄˚

Z
|stage 1s.

To make valuations comparable across pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed
value of the measure is predicted to yield a larger stage 2 e#ect the larger is p (see Appendix C.3 for details).
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D Further Details on Decomposing Preference and Noise

In this appendix, we provide further details for the decomposition exercise in Section 4.4. In this

exercise, we derive an estimate for the population distribution of underlying preferences along with

the magnitude of decision noise. We then use these estimates for three purposes. First, we assess

how much of the variability in our data is due to heterogeneity in preferences versus noise. Second,

we derive what the histogram of response patterns from Figure 5 would look like if we were to remove

the decision noise. Third, we construct refined measures of individual preferences that attempt to

remove some of the noise.

D.1 Underlying Model and Estimating Its Parameters

For a fixed pp, r,Mq, let h˚ ” ph˚
AB

, h
˚
AB1 , h˚

CD
q be a vector of underlying indi”erence values. The pop-

ulation distribution of h˚ has expectation Eph˚q ” pµ˚
AB

, µ
˚
AB1 , µ˚

CD
q ” µ˚ and variance-covariance

matrix

V

¨

˚̊
˝

h
˚
AB

h
˚
AB1

h
˚
CD

˛

‹‹‚”

¨

˚̊
˝

ε
2
AB

εAB,AB1 εAB,CD

εAB,AB1 ε
2
AB1 εAB1,CD

εAB,CD εAB1,CD ε
2
CD

˛

‹‹‚” !
˚
. (D.1)

For XY P tAB,AB
1
, CDu, we assume a person’s two elicited XY valuations are

hXY “ h
˚
XY

` ↼XY and h
1
XY

“ h
˚
XY

` ↼
1
XY

,

where Ep↼XY q “ Ep↼1
XY

q “ 0, varp↼XY q “ varp↼1
XY

q “ ϑ
2
XY

, and ↼XY and ↼
1
XY

are independent

of each other, of the underlying preferences, and of all other noise draws. Note that this model has

twelve parameters: three µ
˚
XY

terms, three ε
2
XY

terms, three εXY,WZ terms, and three ϑ
2
XY

terms.

Now let h ” phAB, hAB1 , hCD, h
1
AB

, h
1
AB1 , h1

CD
q denote a vector of observed valuations.55 Under

these assumptions, we can derive the predicted mean and variance-covariance matrix for the observed

h as a function of the 12 parameters of the underlying model:

Ephq “ pµ˚
AB, µ

˚
AB1 , µ˚

CD, µ
˚
AB, µ

˚
AB1 , µ˚

CDq ” µ

55Recall that each participant faces four pp, rq combinations. For two of those, the participant provides all six
valuations, while for the other two, they provide only phAB , hAB1 , hCD, h

1
CDq. Although we write everything in this

appendix based on the former case, we use all of our data in the analysis, making the appropriate adjustments when
only the CD response has multiple elicitations.
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Vphq “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

ε
2
AB

` ϑ
2
AB

εAB,AB1 εAB,CD ε
2
AB

εAB,AB1 εAB,CD

εAB,AB1 ε
2
AB1 ` ϑ

2
AB1 εAB1,CD εAB,AB1 ε

2
AB1 εAB1,CD

εAB,CD εAB1,CD ε
2
CD

` ϑ
2
CD

εAB,CD εAB1,CD ε
2
CD

ε
2
AB

εAB,AB1 εAB,CD ε
2
AB

` ϑ
2
AB

εAB,AB1 εAB,CD

εAB,AB1 ε
2
AB1 εAB1,CD εAB,AB1 ε

2
AB1 ` ϑ

2
AB1 εAB1,CD

εAB,CD εAB1,CD ε
2
CD

εAB,CD εAB1,CD ε
2
CD

` ϑ
2
CD

˛

‹‹‹‹‹‹‹‹‹‹‹‚

” !

Each entry in Vphq is a theoretical prediction for an empirical moment. For instance, varphABq “
ε
2
AB

` ϑ
2
AB

, and covphAB, h
1
AB

q “ ε
2
AB

. Hence, we can obtain estimates for the 12 model parameters

by calculating the relevant sample moments or combination of sample moments. Specifically, using

“hats” to denote estimates and the subscript s to denote sample moments, we can derive estimates

for the model’s 12 parameters using:

pµ˚
XY

“ EsphXY q
pε2
XY

“ covsphXY , h
1
XY

q
pεXY,WZ “ covsphXY , hWZq

pϑ2
XY

“ varsphXY q ´ covsphXY , h
1
XY

q

Using this approach, Appendix Table A.7 reports estimates for the model’s 12 parameters for each

of the 20 pp, rq combinations.56

Appendix D.5 describes a more sophisticated estimation approach using MLE. Because that

approach requires additional distributional assumptions, is more time-consuming, and is sensitive

to starting values and other estimation details, we prefer the approach described here. We note,

however, that the MLE approach yields very similar estimates.

D.2 Assessing the Role of Heterogeneity versus Noise

Given these estimates, we can assess how much of the variability in our data is due to heterogeneity

in preferences versus noise. Consider first variability in the elicited indi”erence values hAB, hAB1 , and

hCD. The last three columns of Appendix Table A.7 report the estimated proportion of the variability

for each elicited indi”erence value that is due to preferences—i.e., the ratio yvarph˚
XY

q{yvarphXY q “
ε̂
2
XY

{pε̂2
XY

` ϑ̂
2
XY

q for each XY P tAB,AB
1
, CDu. Averaging across the 20 pp, rq combinations,

preference heterogeneity accounts for 61 percent of the variation in hAB, 58 percent of the variation

in hAB1 , and 48 percent of the variation in hCD.

56In Appendix Table A.7, we use observations from both hXY and h
1
XY to calculate EsphXY q and varsphXY q.

Similarly, we treat an individual participant’s phXY , hWZq and their ph1
XY , h

1
WZq as two separate observations when

calculating covsphXY , hWZq.
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Next consider variability in the preference measures !CR, !CC , and !MX . For !CR ” hAB ´
hCD, it is straightforward to derive that

varp!CRq “ varp!˚
CR

q ` ϑ
2
AB

` ϑ
2
CD

and varp!˚
CR

q “ ε
2
AB

` ε
2
CD

´ 2εAB,CD.

One can perform analogous derivations for !CC and !MX . Appendix Table A.8 uses the estimates

in Appendix Table A.7 to calculate these six variances for each pp, rq combination.57 The last three

columns of Appendix Table A.8 report the proportion of the variability for each preference measure

that is due to preferences—i.e., the ratio yvarp!˚
Z

q{yvarp!Zq for each Z P tCR,CC,MXu. Averaging
across the 20 pp, rq combinations, preference heterogeneity accounts for 31 percent of the variation

in !CR, 31 percent of the variation in !CC , and 25 percent of the variation in !MX .

D.3 Simulating Preference Patterns

We next investigate what the histogram of response patterns from Figure 5 would look like if we

were to remove the decision noise. To do so, we make the additional assumption that the underlying

preferences have a joint normal distribution:

h˚ „ N pµ˚
,!

˚q .

For each pp, rq combination, we use the estimated parameters in Appendix Table A.7 to generate

100,000 draws from a joint normal distribution for h˚. We then convert each h
˚
XY

draw into the

midpoint of its two closest integers (e.g., any draw strictly between $2 and $3 is converted to $2.50).

This approach is consistent with the valuations response scales in our experiment, since the switching

rows for anyone with an underlying h
˚
XY

strictly between $2 and $3 would be the $2 and $3 rows, in

which case we would assign them a valuation of $2.50. We then use these converted h
˚
XY

terms to

generate the !˚
Z
terms.58 Figure 6 presents the distribution of preference patterns when we aggregate

across all 20 pp, rq combinations.

Note that this approach permits null preference patterns, including EU consistency. However,

it does not permit preference patterns which would imply intransitivities between h
˚
AB

, h˚
AB1 , and

h
˚
CD

. Of the 27 possible preference patterns in Figures 5 and 6, only 13 can therefore emerge from

our simulation of preferences. The remaining 14 patterns can still emerge in the data due to decision

noise (and the fact that we have independent measures of the three preferences).

57When calculating things in this way, nothing guarantees that the calculated varp”˚
Z

q ! 0, and indeed there is one
instance where this problem arises (for ”MX when pp, rq “ p0.3, 0.5q). We ignore this case and focus on the other 59
cases.

58When carrying out this exercise, we do not impose the upper and lower bounds of our experimental price lists.
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D.4 Using the Decomposition to Refine Measures of Individual Preferences

In Section 4.5 and Appendix C.3, we link an individual’s stage 1 valuations to their stage 2 choices.

Specifically, we create measures of individual preferences using stage 1 valuations, and then use those

measures to predict stage 2 choice patterns. The simplest way to create measures of individual pref-

erences is to take their stage 1 valuations at face value; for example, a measure of their underlying

!˚
CR

is simply !CR “ hAB ´hCD. An alternative approach is to combine a participant’s stage 1 valu-

ations with our decomposition estimates to generate refined measures of their individual preferences.

Intuitively, the decomposition provides us with a prior for each participant’s ph˚
AB

, h
˚
AB1 , h˚

CD
q, and

a participant’s valuations provide a signal that we can use to generate the corresponding posterior.

If h˚, the ↼XY terms, and the ↼
1
XY

terms are all jointly normally distributed, then ph˚
,h) is also

jointly normally distributed, specifically:

¨

˝h˚

h

˛

‚„ N

¨

˝

¨

˝µ˚

µ

˛

‚,

¨

˝ !
˚

!12

!21 !

˛

‚

˛

‚,

where

!12 “

¨

˚̊
˝

ε
2
AB

εAB,AB1 εAB,CD ε
2
AB

εAB,AB1 εAB,CD

εAB,AB1 ε
2
AB1 εAB1,CD εAB,AB1 ε

2
AB1 εAB1,CD

εAB,CD εAB1,CD ε
2
CD

εAB,CD εAB1,CD ε
2
CD

˛

‹‹‚.

Hence, if participant i provides a set of valuations hi, the conditional distribution of h˚ given h “ hi

is h˚|h“hi
„ Npµ˚

post,!
˚
postq where

µ˚
post “ µ˚ ` !12!

´1phi ´ µq
!

˚
post “ !

˚ ´ !12!
´1

!21.

Again, our goal is to obtain more precise measures of a participant’s !˚
Z
terms (for Figure 7) and

h̄
˚
Z

terms (for Supplementary Figure C.1). It is straightforward to use the parameter estimates in

Appendix Table A.7 to generate µ˚
post for each participant.59 We denote the components of µ˚

post by

Erh˚
AB

|stage 1s, Erh˚
AB1 |stage 1s, and Erh˚

CD
|stage 1s. These represent our more refined measure of

the participant’s h˚ terms. We then use these define the following more refined measures for the !˚
Z

terms and h̄
˚
XY

terms.

59Recall that each participant provides all six valuations for two of their pp, rq combinations, but only four valuations
for their remaining two pp, rq combinations. For the latter instances, everything above is adjusted appropriately.
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Er!˚
CR

|stage 1s ” Erh˚
AB

|stage 1s ´ Erh˚
CD

|stage 1s
Er!˚

CC
|stage 1s ” Erh˚

AB1 |stage 1s ´ Erh˚
CD

|stage 1s
Er!˚

MX
|stage 1s ” Erh˚

AB
|stage 1s ´ Erh˚

AB1 |stage 1s
Erh̄˚

CR
|stage 1s ” pErh˚

AB
|stage 1s ` Erh˚

CD
|stage 1sq{2

Erh̄˚
CC

|stage 1s ” pErh˚
AB1 |stage 1s ` Erh˚

CD
|stage 1sq{2

Erh̄˚
MX

|stage 1s ” pErh˚
AB

|stage 1s ` Erh˚
AB1 |stage 1sq{2

The refined measures Erh˚
AB

|stage 1s, Erh˚
AB1 |stage 1s, and Erh˚

CD
|stage 1s are all tightly corre-

lated with their respective raw measures hAB, hAB1 , and hCD, with correlations of 0.89, 0.88, 0.83,

respectively. Similarly, Er!˚
CR

|stage 1s, Er!˚
CC

|stage 1s, and Er!˚
MX

|stage 1s are tightly correlated

with!CR,!CC , and!MX , with correlations of 0.79, 0.79, 0.69, respectively. Finally, Erh̄˚
CR

|stage 1s,
Erh̄˚

CC
|stage 1s, and Erh̄˚

MX
|stage 1s are tightly correlated with h̄CR, h̄CC , and h̄MX , with correla-

tions of 0.91, 0.91, 0.92, respectively. In Figure 7 and Supplementary Figure C.1, we predict stage 2

choices using both the raw measures and the refined measures. The qualitative conclusions are much

the same, although the refined measures make the link between stages more precise.

D.5 Decomposition Using MLE

Our analysis in Appendix D.1 through D.4 estimates the model parameters using the relevant sample

moments or combination of sample moments. The advantage of this approach is that it requires

fewer distributional assumptions and implementation assumptions. For example, our assessment of

the relative contributions of preference heterogeneity versus noise in Appendix D.2 does not require

any distributional assumptions.

Here we describe an alternative approach to estimate the parameters via MLE. We assume as

in Appendix D.4 that h˚, the ↼XY terms, and the ↼
1
XY

terms are all jointly normally distributed,

and therefore, h „ N pµ,!q. Recognizing the interval nature of our valuation tasks, an observation

provides both a lower bound (⇁) and an upper bound (υ) on the participant’s h valuations:

⇁phq “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

⇁phABq
⇁phAB1q
⇁phCDq
⇁ph1

AB
q

⇁ph1
AB1q

⇁ph1
CD

q

˛

‹‹‹‹‹‹‹‹‹‹‹‚

and υphq “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

υphABq
υphAB1q
υphCDq
υph1

AB
q

υph1
AB1q

υph1
CD

q

˛

‹‹‹‹‹‹‹‹‹‹‹‚

.

For instance, if for an hXY valuation task the person switches between the row with H “ $32 and
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H “ $33, then ⇁phXY q “ 32 and υphXY q “ 33. For observations censored at the lower bound (i.e.,

the person always chooses the right-hand option, even when H “ p ¨ $30), we set ⇁phXY q “ ´8
and υphXY q “ p ¨ $30, whereas for observations censored at the upper bound (i.e., the person always

chooses the left-hand option even when H “ p ¨ $30 ` $50), we set ⇁phXY q “ p ¨ $30 ` $50 and

υphXY q “ 8. Finally, recall that we only collect h1
AB

and h
1
AB1 for half of observations; all missing

valuations are treated as uninformative and assigned ⇁phXY q “ ´8 and υphXY q “ 8. Missing

valuations therefore play no role in the estimation of the parameters as they have a likelihood of 1

(and log-likelihood zero) for all pµ,!q.
Given a participant’s observed ⇁phq and υphq, the model-implied likelihood of that observation as

a function of the parameters in pµ,!q is F pυphq;µ,!q ´F p⇁phq;µ,!q, where F p¨;µ,!q is the CDF

for h given parameters pµ,!q. From here, it is straightforward to set up the sample log-likelihood

summing over all participants.

We run this estimation separately for each of the 20 pp, rq combinations. Supplementary Tables

D.1 and D.2 provide MLE results analogous to those of Appendix Tables A.7 and A.8, where Sup-

plementary Table D.2 is constructed from Supplementary Table D.1 in exactly the same way that

Appendix Table A.8 is constructed from Appendix Table A.7 (see Appendix D.2).

The message from the MLE estimation is much the same as that for our simpler estimation based

on sample moments. Supplementary Figure D.1 compares the MLE estimates from Supplementary

Table D.1 to the estimates from Appendix Table A.7. For the most part, the estimated parameters

are close to each other, although the MLE approach yields slightly more variability for both noise and

preference heterogeneity, which reflects that the MLE approach recognizes the interval nature of the

data and the noise implications of censoring. The central conclusion that preference heterogeneity

accounts for roughly half of the variation in the hXY measures and one third of the variation in the

!Z measures remains the same.
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Figure D.1: Comparison of Decomposition Results (Direct Calculation vs. MLE)

Notes: Figure relates calculated quantities from Table A.7 to MLE estimates from Supplementary Table D.1. Corre-

lation reported for all observations in each panel.
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E Upside-Potential Model: Predictions

E.1 Predictions for the Upside-Potential Model

In this section, we provide a Proof of Proposition 1 and derive the additional model predictions

discussed in Section 5.2 of the main text. For completeness, we replicate the model assumptions

here. Given a lottery pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q, a person evaluates the lottery using decision

utility function:

U “ rqHH ` qMM s ` pqH ` qM q rqHκpHq ` qMκpMqs (E.1)

where κpxq is strictly increasing in x. For binary lotteries with qM “ 0, this formulation reduces to

U “ qHH ` q
2
HκpHq,

and for certain payments with qM “ 1, it reduces to

U “ M ` κpMq.

It is worth highlighting that this model respects first order stochastic dominance on its domain,

pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q. Consider two lotteries f “ pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q and

g “ pH 1
, q

1
H
;M 1

, q
1
M
; 0, 1´ q

1
H

´ q
1
M

q and suppose f first order stochastically dominates (fosd) g. One

implication of f fosd g is that qM `qH % q
1
M

`q
1
H
; otherwise f would have higher probability of zero.

Standard results from EU with a monotonic utility function imply rqHH ` qMM s % rq1
H
H

1 ` q
1
M
M

1s
which in turn implies rqHκpHq ` qMκpMqs % rq1

H
κpH 1q ` q

1
M
κpM 1qs for increasing κp¨q. Combining

these two properties with qM ` qH % q
1
M

` q
1
H

implies

rqHH ` qMM s`pqH`qM q rqHκpHq ` qMκpMqs %
“
q

1
HH

1 ` q
1
MM

1‰`pq1
H`q

1
M q

“
q

1
HκpH 1q ` q

1
MκpM 1q

‰

and hence Upfq % Upgq.
Applying this model to the context of our experiment, the triplet ph˚

AB
, h

˚
AB1 , h˚

CD
q solves

M ` κpMq “ ph
˚
AB ` p

2
κph˚

ABq (E.2)

M ` κpMq “ prh
˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rprκph˚

AB1q ` p1 ´ rqκpMqs (E.3)

rM ` r
2
κpMq “ prh

˚
CD ` pprq2κph˚

CDq. (E.4)

We then characterize behavior in this model in Proposition 1:

Proposition A1. Suppose that ph˚
AB

, h
˚
AB1 , h˚

CD
q is derived from equations (E.2), (E.3), and (E.4).
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For any pp, rq P p0, 1q2 and κpxq that is strictly increasing in X:

(1) A person’s !˚
CR

, !˚
CC

, and !˚
MX

satisfy:

(a) !˚
CR

" 0 if and only if κpMq " p
2
κph˚

AB
q " p

2
κph˚

CD
q;

!˚
CR

# 0 if and only if κpMq # p
2
κph˚

AB
q # p

2
κph˚

CD
q; and

!˚
CR

“ 0 if and only if κpMq “ p
2
κph˚

AB
q “ p

2
κph˚

CD
q.

(b) !˚
CC

" 0 if and only if κpMq "
´

p

2´p

¯
κph˚

AB1q "
´

p

2´p

¯
κph˚

CD
q;

!˚
CC

# 0 if and only if κpMq #
´

p

2´p

¯
κph˚

AB1q #
´

p

2´p

¯
κph˚

CD
q; and

!˚
CC

“ 0 if and only if κpMq “
´

p

2´p

¯
κph˚

AB1q “
´

p

2´p

¯
κph˚

CD
q.

(c) !˚
MX

" 0 if and only if κpMq # pκph˚
AB1q # pκph˚

AB
q;

!˚
MX

# 0 if and only if κpMq " pκph˚
AB1q " pκph˚

AB
q; and

!˚
MX

“ 0 if and only if κpMq “ pκph˚
AB1q “ pκph˚

AB
q.

(2) !˚
CR

$ 0 implies !˚
CC

# 0 and !˚
MX

" 0, and !˚
CC

$ 0 implies !˚
MX

" 0. (Equivalently,

!˚
MX

$ 0 implies !˚
CR

" 0 and !˚
CC

" 0, and !˚
CC

% 0 implies !˚
CR

" 0.)

(3) The person must exhibit one of the following seven patterns of behavior:

P1: 0 " !˚
CR

" !˚
CC

and !˚
MX

" 0 (RCRP´RCCP´MXP)

P12: 0 “ !˚
CR

" !˚
CC

and !˚
MX

" 0 (!CRP´RCCP´MXP)

P2: !˚
CR

" 0 " !˚
CC

and !˚
MX

" 0 (CRP´RCCP´MXP)

P23: !˚
CR

" !˚
CC

“ 0 and !˚
MX

" 0 (CRP´!CCP´MXP)

P3: !˚
CR

" !˚
CC

" 0 and !˚
MX

" 0 (CRP´CCP´MXP)

P34: !˚
CR

“ !˚
CC

" 0 and !˚
MX

“ 0 (CRP´CCP´ !MXP)

P4: !˚
CC

" !˚
CR

" 0 and !˚
MX

# 0 (CRP´CCP´RMXP).

Proof:

(1a) Recall that !˚
CR

“ h
˚
AB

´h
˚
CD

, where h˚
AB

and h
˚
CD

are derived from equations (E.2) and (E.4).

We can rewrite equation (E.4) as

M ` κpMq “ ph
˚
CD ` p

2
κph˚

CDq ` p1 ´ rq
`
κpMq ´ p

2
κph˚

CDq
˘
,

and combining this equation with equation (E.2) yields

ph
˚
AB ` p

2
κph˚

ABq “ ph
˚
CD ` p

2
κph˚

CDq ` p1 ´ rq
`
κpMq ´ p

2
κph˚

CDq
˘
.

Proof of CD condition: Because ph ` p
2
κphq is strictly increasing in h, this equation implies h˚

AB
"

h
˚
CD

if and only if κpMq " p
2
κph˚

CD
q, h˚

AB
# h

˚
CD

if and only if κpMq # p
2
κph˚

CD
q, and h

˚
AB

“ h
˚
CD

if and only if κpMq “ p
2
κph˚

CD
q.
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Proof of AB condition: Define fphq “ ph ` p
2
κphq ` p1 ´ rqpκpMq ´ p

2
κphqq, so h

˚
CD

is defined by

fph˚
CD

q “ M ` κpMq. Because f is strictly increasing in h, h˚
AB

" h
˚
CD

if and only if fph˚
AB

q "
M ` κpMq, which based on equation (E.2) holds if and only if κpMq " p

2
κph˚

AB
q. Analogously,

h
˚
AB

# h
˚
CD

if and only if fph˚
AB

q # M ` κpMq or κpMq # p
2
κph˚

AB
q, and h

˚
AB

“ h
˚
CD

if and only if

fph˚
AB

q “ M ` κpMq or κpMq “ p
2
κph˚

AB
q.

Finally, note that when !˚
CR

" 0 and thus h˚
AB

" h
˚
CD

, κ strictly increasing implies p2κph˚
AB

q "
p
2
κph˚

CD
q. Analogously, !˚

CR
# 0 implies p2κph˚

AB
q # p

2
κph˚

CD
q, and !˚

CR
“ 0 implies p2κph˚

AB
q “

p
2
κph˚

CD
q. The result follows.

(1b) Recall that !˚
CC

“ h
˚
AB1 ´ h

˚
CD

, where h
˚
AB1 and h

˚
CD

are derived from equations (E.3) and

(E.4). We can rewrite equation (E.3) as

rM ` r
2
κpMq “ prh

˚
AB1 ` pprq2κph˚

AB1q ` p1 ´ rqr ppκph˚
AB1q ´ p2 ´ pqκpMqq ,

and combining this equation with equation (E.4) yields

prh
˚
CD ` pprq2κph˚

CDq “ prh
˚
AB1 ` pprq2κph˚

AB1q ` p1 ´ rqr ppκph˚
AB1q ´ p2 ´ pqκpMqq .

Proof of AB1 condition: Because prh ` pprq2κphq is strictly increasing in h, this equation implies

h
˚
AB1 " h

˚
CD

if and only if κpMq "
´

p

2´p

¯
κph˚

AB1q, h˚
AB1 # h

˚
CD

if and only if κpMq #
´

p

2´p

¯
κph˚

AB1q,
and h

˚
AB1 “ h

˚
CD

if and only if κpMq “
´

p

2´p

¯
κph˚

AB1q.

Proof of CD condition: Define fphq “ prh ` pprq2κphq ` p1 ´ rqr ppκphq ´ p2 ´ pqκpMqq, so h
˚
AB1

is defined by fph˚
AB1q “ rM ` r

2
κpMq. Because f is strictly increasing in h, h˚

AB1 " h
˚
CD

if and

only if fph˚
CD

q # rM ` r
2
κpMq, which holds if and only if κpMq "

´
p

2´p

¯
κph˚

CD
q. Analogously,

h
˚
AB1 # h

˚
CD

if and only if fph˚
CD

q " rM ` r
2
κpMq or κpMq #

´
p

2´p

¯
κph˚

CD
q, and h

˚
AB1 “ h

˚
CD

if

and only if fph˚
CD

q “ rM ` r
2
κpMq or κpMq “

´
p

2´p

¯
κph˚

CD
q.

Finally, note that when!˚
CC

" 0 and thus h˚
AB1 " h

˚
CD

, κ strictly increasing implies
´

p

2´p

¯
κph˚

AB1q "
´

p

2´p

¯
κph˚

CD
q. Analogously, !˚

CC
# 0 implies

´
p

2´p

¯
κph˚

AB1q #
´

p

2´p

¯
κph˚

CD
q, and!˚

CC
“ 0 implies

´
p

2´p

¯
κph˚

AB1q “
´

p

2´p

¯
κph˚

CD
q.

(1c) Recall that !˚
MX

“ h
˚
AB

´ h
˚
AB1 , where h

˚
AB

and h
˚
AB1 are derived from equations (E.2) and

(E.3). We can rewrite equation (E.3) as

M ` κpMq “ ph
˚
AB1 ` p

2
κph˚

AB1q ` p1 ´ rqp1 ´ pq ppκph˚
AB1q ´ κpMqq ,
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and combining this equation with equation (E.2) yields

ph
˚
AB ` p

2
κph˚

ABq “ ph
˚
AB1 ` p

2
κph˚

AB1q ` p1 ´ rqp1 ´ pq ppκph˚
AB1q ´ κpMqq .

Proof of AB1 condition: Because ph ` p
2
κphq is strictly increasing in h, this equation implies h˚

AB
"

h
˚
AB1 if and only if κpMq # pκph˚

AB1q, h˚
AB

# h
˚
AB1 if and only if κpMq " pκph˚

AB1q, and h
˚
AB

“ h
˚
AB1

if and only if κpMq “ pκph˚
AB1q.

Proof of AB condition: Define fphq “ ph ` p
2
κphq ` p1 ´ rqp1 ´ pqppκphq ´ κpMqq, so h

˚
AB1 is

defined by fph˚
AB1q “ M ` κpMq. Because f is strictly increasing in h, h˚

AB
" h

˚
AB1 if and only if

fph˚
AB

q " M ` κpMq, which holds if and only if κpMq # pκph˚
AB

q. Analogously, h˚
AB

# h
˚
AB1 if and

only if fph˚
AB

q # M `κpMq or κpMq " pκph˚
AB

q, and h
˚
AB

“ h
˚
AB1 if and only if fph˚

AB
q “ M `κpMq

or κpMq “ pκph˚
AB

q.

Finally, note that when !˚
MX

" 0 and thus h
˚
AB

" h
˚
AB1 , κ strictly increasing implies pκph˚

AB1q #
pκph˚

AB
q. Analogously, !˚

MX
# 0 implies pκph˚

AB1q " pκph˚
AB

q, and !˚
MX

“ 0 implies pκph˚
AB1q “

pκph˚
AB

q. The result follows.

(2) From 1a, !˚
CR

$ 0 if and only if κpMq $ p
2
κph˚

AB
q $ p

2
κph˚

CD
q. Because p

2 # p

2´p
for any

p P p0, 1q, it follows that κpMq # p

2´p
κph˚

CD
q, and thus from 1b it follows that !˚

CC
# 0. Similarly,

because p
2 # p for any p P p0, 1q, it follows that κpMq # pκph˚

AB
q, and thus from 1c it follows that

!˚
MX

" 0.

From 1b, !˚
CC

$ 0 if and only if p

2´p
κph˚

AB1q. Because p

2´p
# p for any p P p0, 1q, it follows that

κpMq # pκph˚
AB1q, and thus from 1c it follows that !˚

MX
" 0. The result follows (and note that the

“equivalently” sentence follows directly from the initial sentence).

(3) First, recall that !˚
MX

“ !˚
CR

´!˚
CC

, and thus !˚
MX

" 0 implies !˚
CR

" !˚
CC

, !˚
MX

“ 0 implies

!˚
CR

“ !˚
CC

, and !˚
MX

# 0 implies !˚
CR

# !˚
CC

. The result follows directly from this observation

combined with part 2. Specifically, when !˚
CR

$ 0, we must have !˚
CC

# 0 and !˚
MX

" 0, and thus

!˚
CR

" !˚
CC

, yielding patterns P1 and P12. When !˚
CR

" 0 but !˚
CC

$ 0, we must have !˚
MX

" 0

and thus !˚
CR

" !˚
CC

, yielding patterns P2 and P23. When !˚
CR

" 0 and !˚
CC

" 0 but !˚
MX

% 0,

we must have !˚
CR

% !˚
CC

, yielding patterns P3 and P34. Finally, When !˚
CR

" 0, !˚
CC

" 0, and

!˚
MX

# 0, we must have !˚
CR

# !˚
CC

, yielding pattern P4. This completes all possibilities consistent

with part 2.

↭
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In the main text, we discuss the importance of the special case of our model where the function

κ is linear (i.e., κpxq “ ▷x for some ▷ " 0). This case highlights that MXP emerges in our model

due to the way that probabilities enter, and not because the function κ has some special structure.

Proposition A2. Suppose that ph˚
AB

, h
˚
AB1 , h˚

CD
q is derived from equations (E.2), (E.3), and (E.4),

and further suppose that κpxq “ ▷x for some ▷ " 0. For any pp, rq P p0, 1q2, we must have:

(1) !˚
CR

" 0;

(2) !˚
MX

" 0; and

(3) !˚
CC

could be positive, negative, or zero.

Proof: When κpzq “ ▷z, equation (E.2) becomes

M ` ▷M “ ph
˚
AB ` p

2
▷h

˚
AB !ñ h

˚
AB “ 1 ` ▷

1 ` p▷

M

p
,

equation (E.3) becomes

M ` ▷M “ prh
˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rpr▷h˚

AB1 ` p1 ´ rq▷M s

!ñ h
˚
AB1 “ 1 ` p2 ´ p ´ r ` prq▷

1 ` p1 ´ r ` prq▷
M

p
,

and equation (E.4) becomes

rM ` r
2
▷M “ prh

˚
CD ` pprq2▷h˚

CD !ñ h
˚
CD “ 1 ` r▷

1 ` pr▷

M

p
.

We have !˚
CR

" 0 if and only if h˚
AB

" h
˚
CD

, which holds if and only if

1 ` ▷

1 ` p▷
" 1 ` r▷

1 ` pr▷
!ñ p1 ` ▷qp1 ` pr▷q " p1 ` r▷qp1 ` p▷q

!ñ 1 ` ▷ ` pr▷ ` pr▷
2 " 1 ` r▷ ` p▷ ` pr▷

2 !ñ ▷p1 ´ rqp1 ´ pq " 0.

Since this inequality holds for any pp, rq P p0, 1q2, !˚
CR

" 0 for any pp, rq P p0, 1q2.

Next, we have !˚
MX

" 0 if and only if h˚
AB

" h
˚
AB1 , which holds if and only if

1 ` ▷

1 ` p▷
" 1 ` p2 ´ p ´ r ` prq▷

1 ` p1 ´ r ` prq▷ !ñ p1`▷qp1`p1´r`prq▷q " p1`p2´p´r`prq▷qp1`p▷q

!ñ 1 ` p2 ´ r ` prq▷ ` p1 ´ r ` prq▷2 " 1 ` p2 ´ r ` prq▷ ` p2p ´ p
2 ´ pr ` p

2
rq▷2

!ñ 1 ´ r ´ 2p ` 2pr ` p
2 ´ p

2
r " 0 !ñ p1 ´ rqp1 ´ pq2 " 0.
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Since this inequality holds for any pp, rq P p0, 1q2, it follows that !˚
MX

" 0 for any pp, rq P p0, 1q2.

Finally, it is straightforward to construct examples where !˚
CC

is positive, zero, or negative.

↭

According to Proposition A2, our model with a linear κ function predicts behavior must take on

one of patterns P2, P23, or P3. While a linear κ function can generate our model pattern P2, we

describe in Section 5.1 how a linear κ cannot explain all instances of pattern P2. We provide the

details in the following example.

Example: Explaining Mean Valuations when pp “ 0.5, r “ 0.2q with a κ Function

In our stage 1 data, when p “ 0.5 and r “ 0.2, the mean responses are hAB “ 38, hAB1 “ 29

and hCD “ 33. Hence, part 1 of Proposition 1 implies that κ must satisfy:

1

2
κp29q " 1

3
κp29q " κp15q " 1

4
κp38q.

We show here that one can combine the second and third inequalities to derive that:

κp29q ´ κp15q
14

" κp15q ´ κp0q
15

and
κp29q ´ κp15q

14
" κp38q ´ κp29q

9
.

The second inequality implies κp29q " 3κp15q, from which it is straightforward to derive

κp29q ´ κp15q
14

" κp29q ´ κp15q
15

" 2
κp15q ´ κp0q

15
" κp15q ´ κp0q

15
.

The third inequality implies κp38q # 4κp15q, which when combined with κp29q " 3κp15q from

the middle inequality yields κp38q ´ κp29q # κp15q ´ κp0q. From this, we can derive

κp38q ´ κp29q
9

# κp15q ´ κp0q
9

# 2
κp15q ´ κp0q

15
# κp29q ´ κp15q

14
.

In Section 5.2.1, we describe the relationship predicted by our model between whether a person

exhibits a CRP and their risk aversion in their AB valuation—where a person is risk-averse in the

AB valuation when h
˚
AB

" M{p, and risk-loving when h
˚
AB

# M{p. That exploration is based on

the following proposition:

Proposition A3. Suppose that ph˚
AB

, h
˚
AB1 , h˚

CD
q is derived from equations (E.2), (E.3), and (E.4).

For any pp, rq P p0, 1q2 and κpxq that is strictly increasing in x:
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(1) A person’s h˚
AB

satisfies:

(a) h
˚
AB

" M{p if and only if κpMq " p
2
κph˚

AB
q;

(b) h
˚
AB

# M{p if and only if κpMq # p
2
κph˚

AB
q; and

(c) h
˚
AB

“ M{p if and only if κpMq “ p
2
κph˚

AB
q.

(2) The relationship between a person’s h˚
AB

and !˚
CR

satisfies:

(a) h
˚
AB

" M{p if and only if !˚
CR

" 0;

(b) h
˚
AB

# M{p if and only if !˚
CR

# 0; and

(c) h
˚
AB

“ M{p if and only if !˚
CR

“ 0.

Proof: (1) From equation (E.2), h˚
AB

is derived from

M ` κpMq “ ph
˚
AB ` p

2
κph˚

ABq.

Applying this equation, κpMq " p
2
κph˚

AB
q if and only ifM # ph

˚
AB

or h˚
AB

" M{p; κpMq # p
2
κph˚

AB
q

if and only if M " ph
˚
AB

or h
˚
AB

# M{p; and κpMq “ p
2
κph˚

AB
q if and only if M “ ph

˚
AB

or

h
˚
AB

“ M{p. (2) Follows directly from part 1 combined with Proposition A1 part 1a.

↭

Finally, in Section 6, we discuss the implications of our model for event splits—that is, how people

feel when choosing between a lottery pH, pq versus a lottery pH ` z, p{2;H ´ z, p{2q. Note that the

second lottery is obtained from the first by splitting the “event” of a probability p of winning H into

two “events”, each with probability p{2, that maintain the expected value of the lottery. Several

recent papers have found evidence that people dislike such splits, and one might wonder whether

such evidence is inconsistent with our finding of mixture-loving preferences.

In our model, a person’s preferences for or against event splitting can be determined separately

from their preferences for or against mixtures. In particular, Proposition A2 demonstrated that an

MXP emerges in our model due to the way that probabilities enter our model. In contrast, the

following proposition establishes that preferences for or against event splitting depend on the local

curvature of the function κ.

Proposition A4. Suppose a person is presented with a choice between lottery pH, pq and lottery

pH ` z, p{2;H ´ z, p{2q, and the person chooses based on the decision utility in equation (E.1). For

any pp, rq P p0, 1q2:

(1) If κ is linear on domain rH ´ z,H ` zs, then pH, pq „ pH ` z, p{2;H ´ z, p{2q;
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(2) If κ is concave on domain rH ´ z,H ` zs, then pH, pq ! pH ` z, p{2;H ´ z, p{2q; and

(3) If κ is convex on domain rH ´ z,H ` zs, then pH, pq " pH ` z, p{2;H ´ z, p{2q.

Proof: Applying equation (E.1), the decision-utility comparison is

pH ` p
2
κpHq :

p

2
pH ` zq ` p

2
pH ´ zq ` p

”
p

2
κpH ` zq ` p

2
κpH ´ zq

ı

or

pH ` p
2 rκpHqs : pH ` p

2

„
1

2
κpH ` zq ` 1

2
κpH ´ zq

"

or

κpHq :
1

2
κpH ` zq ` 1

2
κpH ´ zq.

The result follows directly.

↭

E.2 Distinguishing Upside Potential from Probability Weighting

In Appendix F, we show that our model of upside potential provides a substantially better quantita-

tive fit of our aggregate data than either CPT or OPT even when permitting flexible functional forms

for probability weighting. In this section, we consider what properties of our model are fundamentally

distinct from formulations of probability weighting which permit this improved fit.1

We focus on the di”erent ways that probabilities enter into the models. Hence, throughout this

section, we assume a linear κ function for our model (i.e., κpzq “ ▷z) and a linear value function for

CPT or OPT (i.e., vpzq “ z).2

We first assess whether either OPT or CPT with a flexible functional form for ϖ could replicate

the predictions from our upside-potential model. Under OPT with a linear value function, the

indi”erence values ph˚
AB

, h
˚
AB1 , h˚

CD
q are determined from:

M “ ϖppqh˚
AB

M “ ϖpprqh˚
AB1 ` ϖp1 ´ rqM

ϖprqM “ ϖpprqh˚
CD

1We emphasize that a comparison of prospect theory to our model on our data is apt in the sense that the probability
weighting function in prospect theory was developed specifically to speak to anomalies in CR and CC problems.

2For CPT or OPT, adding a slope parameter to the value function would not change predictions.
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Under CPT with a linear value function, the indi”erence values are determined from:

M “ ϖppqh˚
AB

M “ ϖpprqh˚
AB1 ` rϖppr ` 1 ´ rq ´ ϖpprqsM

ϖprqM “ ϖpprqh˚
CD

As discussed above, OPT and CPT coincide for binary lotteries, but not for the trinary lottery B
1.

When κpzq “ ▷z, under our upside-potential model, rearranging the conditions from the proof of

Proposition A.2, the indi”erence values are determined from

M “ p ` p
2
▷

1 ` ▷
h

˚
AB (E.5)

M “ pr ` ppr ` 1 ´ rqpprq▷
1 ` ▷

h
˚
AB1 ` p1 ´ rq ` ppr ` 1 ´ rqp1 ´ rq▷

1 ` ▷
M (E.6)

r ` r
2
▷

1 ` ▷
M “ pr ` pprq2▷

1 ` ▷
h

˚
CD (E.7)

If we were making predictions for decisions that involve only sure amounts or binary lotteries

with one winning outcome, then either OPT or CPT with probability weighting function ϖpqq “
pq ` q

2
▷q{p1 ` ▷q will generate the same predictions as our upside-potential model. This general

point is reflected in the equations above by the fact that the h
˚
AB

and h
˚
CD

conditions would be the

same in all three models. Hence, for decisions that involve only sure amounts or binary lotteries with

one winning outcome, our upside-potential model is a special case of either OPT or CPT, and thus

if we had data on only such decisions, our model could not outperform OPT or CPT.

It is for decisions that involve trinary lotteries with two winning outcomes that neither OPT nor

CPT can replicate the predictions of our model. To see this under OPT, note that it would need to

be the case that the weight on h
˚
AB1 in equation (E.6) can be expressed purely as a function of pr,

the weight on M in equation (E.6) can be expressed purely as a function of p1 ´ rq, and those two

functions would need to be the same. Neither of the first two conditions holds, and thus clearly the

third does not as well.

To see this under CPT, note that we can rewrite the CPT condition for h˚
AB1 as

M “ ϖpprq rh˚
AB1 ´ M s ` ϖppr ` 1 ´ rqM

and the upside-potential condition for h˚
AB1 as

M “ pr ` ppr ` 1 ´ rqpprq▷
1 ` ▷

rh˚
AB1 ´ M s ` ppr ` 1 ´ rq ` ppr ` 1 ´ rq2▷

1 ` ▷
M.

Here, we can match the weight on M if we use ϖpqq “ pq`q
2
▷q{p1`▷q, but there is no way to express

56



the weight on ph˚
AB1 ´ Mq purely as a function of pr. For decisions that involve trinary lotteries,

our upside-potential model is therefore distinct from OPT and CPT even when we assume a linear

κ function.

This analysis highlights a key di”erence between our model and OPT or CPT. For trinary lotteries,

both CPT and OPT require that the weight applied to each outcome depend only on that outcome’s

probability (or cumulative probability in the case of CPT). For lottery B
1 this means the weight on

the highest outcome h
˚
AB1 must be a function solely of that outcome’s probability, in this case pr. In

contrast, under the upside-potential model, the weight applied to outcome h˚
AB1 is a function both of

pr and the total probability of winning, in this case pr ` 1´ r. This fundamental distinction derives

from the central psychology of the upside potential model: that winning probabilities can matter

more the greater is the total chance of winning.

We can obtain further insights on the di”erences between the models by comparing the qualitative

predictions for our experimental tasks of the upside-potential model to the those of OPT or CPT

when we assume probability weighting function ϖpqq “ pq ` q
2
▷q{p1 ` ▷q.

Proposition A2 establishes that for linear κ, the upside potential model predicts both CRP and

MXP, with no prediction for the CC preference. As described above, with probability weighting

function ϖpqq “ pq ` q
2
▷q{p1 ` ▷q, OPT and CPT both replicate the predictions of the upside-

potential model for the AB and CD tasks and thus both predict a CRP. Proposition A5 below

establishes that OPT and CPT with this weighting function both further predict a CCP and an

RMXP. In other words, the two models would disagree on the MX preference, and might disagree on

the CC preference.

Proposition A5. Suppose that ph˚
AB

, h
˚
AB1 , h˚

CD
q is derived from OPT or CPT with a linear value

function and probability weighting function ϖpqq “ q`q
2
ϑ

1`ϑ
. For any pp, rq P p0, 1q2, we must have:

(1) !˚
CR

" 0;

(2) !˚
CC

" 0; and

(3) !˚
MX

# 0.

Proof: First note that part (1) follows from part (1) of Proposition A2 combined with the logic

in the text that, when using ϖpqq “ q`q
2
ϑ

1`ϑ
, both OPT and CPT replicate the predictions from the

upside-potential model for the AB task and the CD task.

Next, note that under both OPT and CPT, the condition for h
˚
AB

is M “ p`p
2
ϑ

1`ϑ
h

˚
AB

, and thus

for any r P p0, 1q,

M “ r

ˆ
p ` p

2
▷

1 ` ▷

˙
h

˚
AB`p1´rqpMq “

ˆ
pr ` p

2
r▷

1 ` ▷

˙
ph˚

AB´Mq`
ˆp1 ´ r ` prq ` p1 ´ r ` p

2
rq▷

1 ` ▷

˙
M.
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Consider the condition for h˚
AB1 under OPT. Define fphq ” pr`pprq2ϑ

1`ϑ
h` p1´rq`p1´rq2ϑ

1`ϑ
M , so under

OPT, h˚
AB1 is defined by M “ fph˚

AB1q. Because for any r P p0, 1q, r

´
p`p

2
ϑ

1`ϑ

¯
" pr`pprq2ϑ

1`ϑ
and

p1 ´ rq " p1´rq`p1´rq2ϑ
1`ϑ

, we must have M " fph˚
AB

q. Since f is increasing in h, it follows that

h
˚
AB1 " h

˚
AB

and thus !˚
MX

# 0. Finally, the combination of !˚
CR

" 0 and !˚
MX

# 0 implies

!˚
CC

" 0.

Now consider the condition for h˚
AB1 under CPT. Define

gphq ”
ˆ
pr ` pprq2▷

1 ` ▷

˙
ph ´ Mq `

ˆp1 ´ r ` prq ` p1 ´ r ` prq2▷
1 ` ▷

˙
M,

so under CPT, h˚
AB1 is defined by M “ gph˚

AB1q. Because for any r P p0, 1q,
´
pr`p

2
rϑ

1`ϑ

¯
" pr`pprq2ϑ

1`ϑ
and

´
p1´r`prq`p1´r`p

2
rqϑ

1`ϑ

¯
"

´
p1´r`prq`p1´r`prq2ϑ

1`ϑ

¯
, we must have M " gph˚

AB
q. Since g is increasing

in h, it follows that h
˚
AB1 " h

˚
AB

and thus !˚
MX

# 0. Finally, the combination of !˚
CR

" 0 and

!˚
MX

# 0 implies !˚
CC

" 0.

↭

Although it is not relevant for our analysis in this paper, we highlight one further distinction

between our upside-potential model and CPT. Under CPT, the weights attached to outcomes depend

on their relative ranks, whereas under our upside-potential model, they do not. To illustrate, consider

a trinary lottery px1, q1;x2, q2q. Under CPT, if x1 " x2 " 0, this lottery is evaluated using ϖpq1qx1 `
rϖpq1 ` q2q ´ ϖpq1qsx2, whereas if x2 " x1 " 0, it is evaluated using ϖpq2qx2 ` rϖpq1 ` q2q ´ ϖpq2qsx1.
Under our model with a linear κ function, for any x1 " 0 and x2 " 0, it is evaluated using r1` pq1 `
q2q▷sq1x1 ` r1 ` pq1 ` q2q▷sq2x2. The weights that are applied to outcomes x1 and x2 under upside

potential are symmetric—depending only on each outcome’s probability and the total probability of

winning—regardless of whether x1 " x2 or x2 " x1. This symmetry may be a valuable feature of the

upside potential model given recent evidence of rank-independence in choice (Bernheim and Sprenger

(2020); Bernheim et al. (2022)).
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F Upside Potential Model: Estimation

In this section, we describe the details of the structural estimations described in Sections 5.2.3 and 5.3

of the main text, that is, the structural estimation of our upside-potential model and the structural

estimation of various prospect-theory models.

F.1 Data and General Approach

Our goal is to assess how di”erent models perform in explaining the broad patterns in our data, and

in particular how the empirical valuations hAB, hAB1 , and hCD react to changes in the experimental

parameters pp, r,Mq. To do so in a tractable and concrete way, we take the data to be the average

responses for hAB, hAB1 , and hCD across the 20 di”erent pp, rq combinations for which we collect

responses. Hence, the data consist of 60 observations, and these are presented together in the first

three columns of Appendix Table A.2.

Our general approach starts with the specification of a model with parameter vector ”. Given

a specified model, we derive the model-predicted h
˚
XY

’s, XY P tAB,AB
1
, CDu, as a function of the

experimental parameters pp, r,Mq and the model parameter vector ”. We denote these predictions

by h
˚
XY

pp, r,M ;”q. We then use the 60 observations in the data to estimate ” using non-linear

least squares—i.e., estimating the equation hXY “ h
˚
XY

pp, r,M ;”q ` ↼. Finally, we assess the

performance of each model using (i) its mean-squared error (MSE), (ii) its internal R2, (iii) the

correlation between the model-predicted h
˚
XY

’s and the observed hXY ’s, and (iv) the correlation

between the model-predicted !˚’s and the observed !’s.

F.2 Estimating the Upside-Potential Model

We estimate the upside potential model in equation (E.1), where the model predictions for h
˚
AB

,

h
˚
AB1 , and h

˚
CD

are defined by equations (E.2), (E.3), and (E.4) from the Online Appendix. In this

model, the sole object to estimate is the function κpxq.
It is important to note that our data are not optimal for estimating the shape of κ. Recall that

we designed our experiment to study connected CR-CC-MX problems across a broad range of the

parameter space. The upside-potential model is our post-hoc attempt to explain the broad patterns

that emerged in our data that are inconsistent with existing prominent non-EU models. We did not

have this model in mind when we designed our experiment, and the data from our experiment do not

have the ideal variation one might want if the goal had been to estimate this model. Nonetheless,

this estimation gives some initial indication of what shape of κ may be to rationalize our data.

Because we have no a priori sense of the shape of κ, we begin with a flexible functional form.

Within our design, M takes on the values 9, 15, 24, and 27, while Appendix Table A.2 reveals that

h takes on values 23.83, 26.35, 27.77 and then various larger values up to 42.56. Hence, we use the
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following functional form that has ” ” pε1, ε2, ε3, ε4, ε5, ε6q:

κpx;”q ”

$
’’’’’’’’’’’&

’’’’’’’’’’’%

ε1x if x P r0, 9s
κp9;”q ` ε2px ´ 9q if x P r9, 15s

κp15;”q ` ε3px ´ 15q if x P r15, 24s
κp24;”q ` ε4px ´ 24q if x P r24, 27s
κp27;”q ` ε5px ´ 27q if x P r27, 36s
κp36;”q ` ε6px ´ 36q if x % 36

In our data, there are 15 instances each of κ getting evaluated at x “ 9, x “ 15, x “ 24, and

x “ 27 (i.e., for each of the four values of M). In contrast, based on the mean h values we observe,

there are no x P p0, 9q or x P p9, 15q, and only one instance each of x P p15, 24q and x P p24, 27q.
Hence, ε1, ε2, ε3, and ε4 primarily capture κp9q, κp15q, κp24q, and κp27q—i.e., the values of κ at the

four values of M . The remaining 58 values for the h’s lie in x P p27, 43q. We permit κ to be either

linear (i.e., ε5 “ ε6) or two-part-linear over this range, where for the latter case we put the kink at

x “ 36 based on wanting similar instances of x above and below the kink.

In Supplementary Table F.1, column (1) reports estimates when we assume κ is two-part linear

above x “ 27, while column (2) reports estimates when we assume κ is linear above x “ 27. In

addition, Supplementary Figures F.1 and F.2 depict for each estimated model (i) the estimated κ

function, (ii) the actual hXY valuations against their model-predicted values, and (iii) the actual !

measures against their model-predicted values.

Both the six and five parameter κ functions fit the data well in-sample, delivering R
2 values above

0.75, correlations between predicted and actual hXY valuations around 0.9, and correlations between

predicted and actual!measures also around 0.9. Though the six-parameter model provides a slightly

better in-sample fit for the levels of response, the five-parameter model performs slightly better in

terms of correlation with the key preference measures, !CR,!CC , and !MX . The six-parameter

model also exhibits a slight non-monotonicity in the estimated κ function between 27 and 36 with ε5

estimated to be negative. We believe this, and the slightly worse match to the ! measures is due to

overfitting and lack of variability for all types of hXY in the data. As can be observed in Figure F.1,

Panel B, the majority of observations between x “ 27 and x “ 36 are hCD responses, while those

above x “ 36 also include hAB and hAB1 . The six-parameter model can thus e”ectively dedicate a

parameter to fit a single type of data in the x P p27, 36q region. This yields a slightly better fit of

the levels but compromises on fitting di”erences. Due to this possibility of overfitting, our preferred

estimates are those of the five-parameter model.

Within our preferred model, our estimates suggest that κ has an S-shape. In an attempt to

capture this shape using a functional form with fewer parameters, we next consider a three-parameter
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sigmoid function with ” ” pε1, ε2, ε3q:

κpz,”q “ ε1 ˚
„

1

1 ` exppε2pz ´ ε3qq

"
´ ε1 ˚

„
1

1 ` exppε2p0 ´ ε3qq

"
.

In this formulation, the first bracketed term is a classic two-parameter sigmoid function (with pa-

rameters ε2 and ε3) that goes from zero (as x Ñ ´8) to one (as x Ñ 8). The third parameter (ε1)

is a multiplier on the bracketed term that makes the first term instead go from zero to ε1. Finally,

the second term subtracts o” the value of the first term when it is evaluated at x “ 0 to ensure that

κp0q “ 0.

Column (3) of Supplementary Table F.1 presents estimates for this functional form, while Supple-

mentary Figure F.3 provides a corresponding illustration of model fit. Again, substantial non-linearity

of the κ function emerges in estimation. Imposing this functional form, however, does lead to a sub-

stantial reduction in explanatory power for the levels of the hXY valuations. Interestingly, however,

this three-parameter functional form delivers correlations between predicted and actual ! measures

close to that of our preferred five-parameter model and exceeding that of the six-parameter model

noted above. Panel C of Figure F.3 makes clear that if one’s primary objective is to predict !CR,

!CC , and !MX , this three-parameter functional matches the 60 di”erences in the data well.

F.3 Estimating Prospect-Theory Models

As a point of comparison for the fit of our upside potential model, we also estimate several variants of

prospect-theory models using the same 60 data points. As in Appendix B.1, under original prospect

theory (OPT) as in Kahneman and Tversky (1979), a person’s valuations are given by

hAB “ v
´1

ˆ
1

ϖppqvpMq
˙
, hAB1 “ v

´1

ˆ
1 ´ ϖp1 ´ rq

ϖpprq vpMq
˙
, and hCD “ v

´1

ˆ
ϖprq
ϖpprqvpMq

˙
.

As in Appendix B.2, under cumulative prospect theory (CPT) as in Tversky and Kahneman (1992),

a person’s hAB and hCD valuations are as above, while there hAB1 valuation is:

hAB1 “ v
´1

ˆ
1 ´ pϖppr ` 1 ´ rq ´ ϖpprqq

ϖpprq vpMq
˙
.

For either version, the objects to estimate are the probability weighting function ϖpqq and the value

function vpxq.
We first estimate these models using functional forms frequently used in the literature. Specifi-

cally, we assume the value function is vpxq “ x
ϖ, and we consider both the one-parameter probability

weighting function from Tversky and Kahneman (1992),
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ϖpqq “ q
ω

rqω ` p1 ´ qqωs1{ω ,

and the two-parameter probability weighting function from Lattimore et al. (1992),

ϖpqq “ ◁q
ω

◁qω ` p1 ´ qqω .

Columns (4) and (5) of Supplementary Table F.1 present estimates for CPT for these two functional

forms for ϖpqq, and columns (7) and (8) does the same for OPT. Supplementary Figures F.4, F.5,

F.7, and F.8 depict for each estimated model (i) the estimated probability weighting function, (ii) the

actual hXY valuations against their model-predicted values, and (iii) the actual ! measures against

their model-predicted values.

All four specifications have poor in-sample fit and substantially underperform our three-parameter

model of upside potential. The best fitting version of prospect theory is CPT with the two-parameter

ϖpqq which has an MSE of 18.03, an R-squared of ´0.23, a correlation between predicted and actual

hXY valuations of 0.55, and a correlation between predicted and actual ! measures of 0.7. The

negative R
2 value implies that a researcher would be more accurate if they predicted the mean

outcome for every response rather than using the model prediction.

Though these PT estimates do not fit our data well, the estimated parameters for the one-

parameter probability weighting function are close to those in the existing literature. Using data on

certainty equivalents for binary lotteries, Tversky and Kahneman (1992) provide median estimates

of 0 “ 0.88 and ε1 “ 0.61. Using similar data, Bernheim and Sprenger (2020) estimate 0 “ 0.94

and ε1 “ 0.72. In Supplementary Table F.1, our estimates are 0 “ 0.80 and ε1 “ 0.84 for CPT, and

0 “ 0.75 and ε1 “ 0.79 for OPT.

It is perhaps not surprising that these prominent functional forms for probability weighting per-

form poorly in explaining our data since they were developed to generate a global CRP and CCP.

Hence, it is worth assessing now much better CPT and OPT might perform with a more flexible

functional form. Specifically, we consider the following six-part piecewise-linear functional form for

probability weighting:
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ϖpq;”q ”

$
’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’%

0 if q “ 0

ε0 ` ε1q if q P p0, q̄1s
ϖpq̄1;”q ` ε2pq ´ q̄1q if q P rq̄1, q̄2s
ϖpq̄2;”q ` ε3pq ´ q̄2q if q P rq̄2, q̄3s
ϖpq̄3;”q ` ε4pq ´ q̄3q if q P rq̄3, q̄4s
ϖpq̄4;”q ` ε5pq ´ q̄4q if q P rq̄4, q̄5s
ϖpq̄5;”q ` ε6pq ´ q̄5q if q P rq̄5, 1q
1 if q “ 1

Note that to provide OPT and CPT with extra flexibility, this piecewise-linear function permits

(but does not require) discontinuities at q “ 0 and q “ 1. We selected the five kink points (i.e., the

q̄i’s) ex ante based on where ϖpqq would need to be evaluated in each model—putting kinks at q’s

where ϖ is frequently evaluated while also trying to have similar numbers of instances within each

segment. For the OPT model, we chose pq̄1, q̄2, q̄3, q̄4, q̄5q “ p0.15, 0.3, 0.5, 0.7, 0.8q, whereas for CPT
we chose pq̄1, q̄2, q̄3, q̄4, q̄5q “ p0.15, 0.3, 0.5, 0.8, 0.9q. Also, note that this specification nests expected

utility, ε “ p0, 1, 1, 1, 1, 1, 1q.
Columns (6) and (9) of Supplementary Table F.1 present these flexible estimates for CPT and

OPT, respectively. Supplementary Figures F.6 and F.9 depict for each estimated model (i) the

estimated probability weighting function, (ii) the actual hXY valuations against their model-predicted

values, and (iii) the actual!measures against their model-predicted values. For OPT, this additional

flexibility does relatively little to improve fit, and a researcher would remain more accurate predicting

the mean for every observation rather than using the model prediction. In contrast, for CPT, this

extra flexibility leads to qualitative fit improvements, roughly halving the MSE to 11.02 and delivering

a positive R
2 value. Importantly, however, the MSE of this best-performing CPT model is still

around three times larger than that of our preferred upside-potential model, while the R
2 value is

approximately three times smaller. This worse fit is particularly notable given that the flexible CPT

model has access to three more degrees of freedom than our preferred specification of upside potential.
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Table F.1: Estimates of Upside Potential and Probability Weighting

Upside Potential CPT Probability Weighting OPT Probability Weighting

Flexible Flexible Parametric Parametric Parametric Flexible Parametric Parametric Flexible

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Utility Curvature

0 0.80 0.43 0.35 0.75 0.73 0.70

p0.02q p0.05q p0.04q p0.02q p0.03q p0.03q

Upside Potential/Weighting Parameters

ε1 1.58 1.76 135.34 0.84 1.84 0.20 0.79 0.93 0.04

p0.26q p0.32q p37.59q p0.03q p0.22q p0.04q p0.02q p0.02q p0.01q
ε2 3.73 4.41 0.19 0.63 1.85 0.75 1.17

p0.67q p0.88q p0.00q p0.03q p0.13q p0.03q p0.13q
ε3 6.43 6.86 19.36 1.07 0.94

p1.04q p1.36q p0.39q p0.05q p0.06q
ε4 6.68 7.70 0.62 0.73

p1.63q p1.63q p0.07q p0.09q
ε5 ´0.25 1.72 0.29 0.51

p0.41q p0.54q p0.10q p0.13q
ε6 6.95 0.54 1.32

p1.68q p0.11q p0.21q
ε7 0.69 0.98

p0.16q p0.16q

Observations 60 60 60 60 60 60 60 60 60

Degrees of Freedom 54 55 57 58 57 52 58 57 52

hXY -MSE 2.71 3.53 7.72 33.88 18.03 11.02 26.85 26.17 21.71

hXY -R2 0.82 0.76 0.47 ´1.31 ´0.23 0.25 ´0.83 ´0.78 ´0.48

ωphXY , ĥXY q 0.92 0.91 0.83 ´0.20 0.55 0.71 0.22 0.30 0.45

!-MSE 6.15 7.58 7.51 41.48 24.01 19.92 32.51 31.39 29.31

!-R2 0.66 0.58 0.59 ´1.28 ´0.32 ´0.10 ´0.79 ´0.73 ´0.61

ωp!, !̂q 0.88 0.90 0.89 ´0.51 0.70 0.72 0.22 0.39 0.49

Note: Non-linear least squares regressions using 60 mean values of hAB , hAB1 , hCD as observations. Standard errors in parentheses. R
2 values calculated as 1 ´ RSS{TSS, where TSS is sum of

squared deviations to the average value among the 60 observations, and RSS is the sum of squared residuals between the estimated model and the data. Negative values indicate that predicting

the mean for every observation would yield better fit than the estimated model. MSE values, R2 values, and correlation between predicted and actual values, ϱ, provided for both levels, hXY ’s,

and di”erences, !’s.
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Figure F.1: Upside Potential Estimates - Flexible Six Parameter Model
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Figure F.2: Upside Potential Estimates - Flexible Five Parameter Model
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Figure F.3: Upside Potential Estimates - Parametric Functional Form
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Figure F.4: CPT Probability Weighting Estimates - Parametric One Parameter Weighting Function
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Figure F.5: CPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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Figure F.6: CPT Probability Weighting Estimates - Flexible Functional Form
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Figure F.7: OPT Probability Weighting Estimates - Parametric One Parameter Weighting Function
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Figure F.8: OPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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Figure F.9: OPT Probability Weighting Estimates - Flexible Functional Form
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G Screenshots from the Online Experiment

Figure G.1: Example Price List for Stage 1 AB
1 Valuation Task with p “ 0.8 and r “ 0.1
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Figure G.2: Example Price List for Stage 1 AB Valuation Task with p “ 0.8 and r “ 0.1
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Figure G.3: Example Price List for Stage 1 CD Valuation Task with p “ 0.8 and r “ 0.1
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Figure G.4: Example AB
1 Binary Choice from Stage 2 with p “ 0.8, r “ 0.1, and H “ 39

Figure G.5: Example AB Binary Choice from Stage 2 with p “ 0.8, r “ 0.1, and H “ 49

Figure G.6: Example CD Binary Choice from Stage 2 with p “ 0.8, r “ 0.1, and H “ 49
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Figure G.7: Incentivized Comprehension Check #1
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Figure G.8: Incentivized Comprehension Check #2
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Figure G.9: Example Visual Search Task
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