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A Additional Tables and Figures

Table A.1: Participant Demographics

(1) (2) (3) (4) (5) (6)

Full

Sample

Any

r “ 0.1

Any

r “ 0.2

Any

r “ 0.3

Any

r “ 0.5

Any

r “ 0.8

Number of Participants 2,102 1,247 1,250 1,246 1,221 1,212

Time Taken (in minutes) 27.3 27.2 27.3 27.3 27.3 27.4

Age 25.2 25.1 25.1 25.4 25.2 25.2

Prolific Score 99.8 99.8 99.8 99.8 99.8 99.8

Number of Approvals 304.9 304.7 298.7 310.5 302.9 305.5

Female 50.0 50.6 50.2 49.9 49.5 50.3

Current Student 41.9 42.0 43.7 41.0 40.1 42.0

College Degree 62.1 62.4 61.8 62.5 62.7 62.5

Working (full- or part-time) 59.3 58.5 59.3 60.8 58.9 60.1

English First Language 57.9 58.9 57.2 59.1 58.9 56.8

Attention Checks

Incentive Question Correct 95.5 95.4 95.8 95.7 95.8 95.6

Passed Attention Check 96.3 96.2 96.6 96.4 96.2 96.5

Comprehension Questions

MPL Question Correct 85.2 84.5 85.5 84.5 85.9 84.7

Bin Question Correct 79.4 79.7 79.7 78.9 78.5 79.9

Both Questions Correct 69.4 69.5 69.7 67.7 69.4 69.3

Current Residency

United States 24.6 25.3 23.2 25.2 26.0 24.6

United Kingdom 38.4 37.9 39.8 39.3 37.3 38.0

Portugal 21.8 21.7 22.5 20.5 21.5 22.9

Spain 5.5 5.3 5.0 5.6 5.2 5.8

Germany 3.1 3.4 2.9 3.0 3.1 2.7

Notes: Column (1): participant demographics for all 2,102 participants. Columns (2) to Column (6):
participant demographics if ever assigned to a given value of r across four possible pp, rq pairs.
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Table A.2: Mean Valuations by p and r

hAB hAB1 hCD h1
CD N h1

AB h1
AB1 N

Panel A: r “ 0.1

p “ 0.3 36.78 23.83 31.10 34.43 406 36.24 24.92 208
p “ 0.5 37.99 27.77 31.50 32.59 421 37.62 28.47 203
p “ 0.8 41.34 36.52 34.91 34.86 422 40.50 35.14 205
p “ 0.9 40.37 35.20 34.37 33.81 430 40.36 36.38 219

Panel B: r “ 0.2

p “ 0.3 35.63 26.35 32.16 32.07 425 34.89 23.95 212
p “ 0.5 38.57 29.17 34.00 32.82 468 39.09 30.35 207
p “ 0.8 39.56 36.36 36.52 36.46 419 38.79 35.59 216
p “ 0.9 39.42 38.71 35.20 35.34 398 40.22 39.68 194

Panel C: r “ 0.3

p “ 0.3 36.48 29.14 34.49 34.25 399 36.50 28.76 211
p “ 0.5 39.65 32.95 35.55 35.65 389 38.74 33.89 194
p “ 0.8 42.18 39.37 35.92 36.44 474 40.88 39.01 249
p “ 0.9 39.32 40.14 37.09 37.62 435 39.00 40.26 213

Panel D: r “ 0.5

p “ 0.3 37.38 30.17 38.23 38.00 426 37.64 31.48 207
p “ 0.5 39.28 34.37 39.51 39.58 412 38.62 35.17 221
p “ 0.8 38.75 37.61 37.82 37.71 388 38.87 36.21 191
p “ 0.9 38.58 38.67 37.43 36.78 425 39.12 37.36 197

Panel E: r “ 0.8

p “ 0.3 37.34 34.54 36.73 36.89 446 36.73 35.07 237
p “ 0.5 38.04 37.45 38.67 38.25 412 38.81 36.98 193
p “ 0.8 40.64 41.25 42.56 42.56 399 40.50 41.84 215
p “ 0.9 38.32 39.48 37.87 38.01 414 38.21 38.71 212

Notes: Table presents mean valuations for each pp, rq combination. Each participant provides a valuation
for four pp, rq combinations subject to the restriction that they see each p exactly once. For two pp, rq pairs,
participants report all six valuations: hAB , hAB1 , hCD, h1

AB , h
1
AB1 , and h1

CD. For the remaining two pp, rq pairs,
participants provide four valuations: hAB , hAB1 , hCD, and h1

CD. We randomly label multiple valuations hXY

or h1
XY , so that it was equally likely that either was presented first.
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Table A.3: Correlations Between hXY and h1
XY by p and r

(1) (2) (3) (4) (5)
r “ 0.1 r “ 0.2 r “ 0.3 r “ 0.5 r “ 0.8

Panel A: ρphAB, h
1
ABq

p “ 0.3 0.256 0.369 0.422 0.372 0.617
p “ 0.5 0.402 0.464 0.540 0.586 0.696
p “ 0.8 0.428 0.545 0.395 0.447 0.641
p “ 0.9 0.314 0.497 0.402 0.519 0.548

Panel B: ρphAB1 , h1
AB1q

p “ 0.3 0.254 0.492 0.439 0.433 0.545
p “ 0.5 0.320 0.406 0.445 0.619 0.614
p “ 0.8 0.564 0.444 0.461 0.475 0.584
p “ 0.9 0.292 0.514 0.385 0.355 0.483

Panel C: ρphCD, h
1
CDq

p “ 0.3 0.452 0.453 0.570 0.538 0.541
p “ 0.5 0.474 0.512 0.410 0.590 0.583
p “ 0.8 0.435 0.484 0.461 0.389 0.529
p “ 0.9 0.462 0.431 0.485 0.453 0.432

Notes: Table reports correlation coefficients calculated using all valuations for which there are multiple measures
for a given individual and pp, rq. Multiple measures of hCD are available for all observations, and therefore an
average sample of 420 observations is used to compute each ρphCD, h1

CDq. Multiple measures of hAB and hAB1 are
available for only half of observations, and therefore an average sample of 210 observations is used to compute each
ρphAB , h

1
ABq and ρphAB1 , h1

AB1 q. The exact sample sizes for each cell are listed in Appendix Table A.2.
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Table A.4: Means and Sign Tests

(1) (2) (3) (4) (5) (6) (7) (8)
Number of Cases

Probability Common ∆ Mean Test
∆ ą 0 ∆ “ 0 ∆ ă 0

Sign Test ∆
(p) Ratio (r) (Mean) (p-value) (p-value) (Median)

Panel A: Test of ∆˚
CR “ 0

0.3 0.1 5.68 0.000 224 65 117 0.000 4
0.3 0.2 3.48 0.000 208 60 157 0.009 0
0.3 0.3 1.99 0.016 186 72 141 0.015 0
0.3 0.5 ´0.85 0.243 160 93 173 0.511 0
0.3 0.8 0.61 0.363 176 79 191 0.465 0
0.5 0.1 6.49 0.000 245 71 105 0.000 5
0.5 0.2 4.57 0.000 249 93 126 0.000 1
0.5 0.3 4.10 0.000 215 52 122 0.000 2
0.5 0.5 ´0.23 0.722 153 97 162 0.652 0
0.5 0.8 ´0.63 0.295 146 112 154 0.686 0
0.8 0.1 6.42 0.000 278 50 94 0.000 6
0.8 0.2 3.04 0.000 239 60 120 0.000 3
0.8 0.3 6.26 0.000 299 62 113 0.000 4
0.8 0.5 0.93 0.214 176 65 147 0.119 0
0.8 0.8 ´1.92 0.004 121 76 202 0.000 ´1
0.9 0.1 6.00 0.000 291 55 84 0.000 3
0.9 0.2 4.22 0.000 236 61 101 0.000 2
0.9 0.3 2.23 0.002 230 74 131 0.000 1
0.9 0.5 1.16 0.112 191 77 157 0.077 0
0.9 0.8 0.45 0.443 177 62 175 0.958 0

Panel B: Test of ∆˚
CC “ 0

0.3 0.1 ´10.60 0.000 93 36 277 0.000 ´8
0.3 0.2 ´5.72 0.000 129 50 246 0.000 ´3
0.3 0.3 ´5.11 0.000 121 59 219 0.000 ´2
0.3 0.5 ´7.83 0.000 96 59 271 0.000 ´6
0.3 0.8 ´2.35 0.002 156 73 217 0.002 0
0.5 0.1 ´4.81 0.000 127 54 240 0.000 ´4
0.5 0.2 ´3.65 0.000 128 69 271 0.000 ´4
0.5 0.3 ´2.70 0.002 119 64 206 0.000 ´1
0.5 0.5 ´5.22 0.000 106 67 239 0.000 ´4
0.5 0.8 ´0.80 0.240 136 85 191 0.003 0
0.8 0.1 1.66 0.062 171 86 165 0.785 0
0.8 0.2 ´0.10 0.894 164 60 195 0.113 0
0.8 0.3 2.93 0.000 216 77 181 0.088 0
0.8 0.5 ´0.11 0.887 155 76 157 0.955 0
0.8 0.8 ´1.31 0.071 149 46 204 0.004 ´1
0.9 0.1 1.39 0.059 170 111 149 0.263 0
0.9 0.2 3.36 0.000 182 81 135 0.010 0
0.9 0.3 2.52 0.002 193 70 172 0.295 0
0.9 0.5 1.89 0.009 170 73 182 0.558 0
0.9 0.8 1.46 0.026 170 72 172 0.957 0

Panel C: Test of ∆˚
MX “ 0

0.3 0.1 11.32 0.000 143 27 38 0.000 9
0.3 0.2 10.94 0.000 161 18 33 0.000 10
0.3 0.3 7.74 0.000 127 43 41 0.000 5
0.3 0.5 6.16 0.000 127 35 45 0.000 5
0.3 0.8 1.67 0.031 114 41 82 0.027 0
0.5 0.1 9.15 0.000 144 30 29 0.000 10
0.5 0.2 8.74 0.000 139 38 30 0.000 6
0.5 0.3 4.85 0.000 113 36 45 0.000 4
0.5 0.5 3.45 0.000 111 48 62 0.000 1
0.5 0.8 1.82 0.048 89 48 56 0.008 0
0.8 0.1 5.36 0.000 132 35 38 0.000 5
0.8 0.2 3.19 0.001 125 35 56 0.000 4
0.8 0.3 1.87 0.049 144 36 69 0.000 2
0.8 0.5 2.66 0.009 107 32 52 0.000 2
0.8 0.8 ´1.34 0.117 70 53 92 0.099 0
0.9 0.1 3.98 0.001 134 37 48 0.000 3
0.9 0.2 0.54 0.634 87 37 70 0.201 0
0.9 0.3 ´1.26 0.218 86 40 87 1.000 0
0.9 0.5 1.76 0.103 95 45 57 0.003 0
0.9 0.8 ´0.50 0.519 79 42 91 0.399 0

Notes: Means test and sign test for ∆CR, ∆CC , and ∆MX for each pp, rq combination. We conduct a two-sided t-test
for the difference in means. We also conduct a two-sided sign test, where we exclude all ties (instances of ∆Z “ 0). See
Supplementary Material D.1 for test descriptions.
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Table A.7: Sensitivity of Results to Experimental Parameters in our Stage 2 Experiments

Panel A. Experimental-Parameter Sensitivity

(1) (2) (3)

CR CC MX

Study Study Study

Probability (p) 23.25 49.57 ´28.62

(6.16) (6.14) (5.89)

Common Ratio (r) ´35.19 ´2.70 ´29.88

(2.47) (2.52) (2.30)

Outcome Mean 10.45 ´5.77 16.00

Experiments 120 120 120

Observations 8,408 8,408 8,408

Panel B. Canonical vs. Non-Canonical Parameters

(4) (5) (6)

Canonical
Non-

Canonical
Difference

(i): KT Parameters

CRE ´ RCRE 17.02 9.67 ´7.35

(8.36) (13.76) [´1.86]

Experiments 12 108 120

(ii): Allais Parameters

CCE ´ RCCE 7.91 ´6.51 ´14.41

(5.93) (12.96) [´2.73]

Experiments 6 114 120

Notes: Panel A presents linear regressions that assess the sensitivity of experimental results from CR, CC, or MX studies

from our stage 2 experiments. The specifications include the probability of the high outcome (p), the common ratio (r)

linearly, and a constant. Column (1) presents the results for the 120 CR experiments that we conducted in stage 2 of our

experiment, where the outcome is the net share of participants displaying a CRE relative to an RCRE, CRE ´ RCRE.

Column (2) presents the results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the

outcome is the net share of participants displaying a CCE relative to an RCCE, CCE´RCCE. Column (3) presents the

results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the outcome is the net share

of participants displaying a MXE relative to an RMXE, MXE ´ RMXE. Standard errors are in parentheses. Panel

B presents the average of these outcomes based on whether our stage 2 experiments were conducted at the canonical

parameters in Kahneman and Tversky (1979) (p “ 0.8, r P t0.2, 0.3u) or Allais (1953) (p “ 0.9, r “ 0.1). Standard

deviations are in parentheses, and t-statistics are in brackets.
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Figure A.1: Histogram of Response Patterns for r P t0.1, 0.2, 0.3u and p P t0.8, 0.9u
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´ hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to
∆CR “ 0). The histogram covers the 1,296 observations from the parameters r P t0.1, 0.2, 0.3u and p P t0.8, 0.9u for
which we elicit h1

AB and h1
AB1 . Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0.
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Figure A.2: Histogram of Response Patterns for r R t0.1, 0.2, 0.3u or p R t0.8, 0.9u
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´ hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to
∆CR “ 0). The histogram covers the 2,908 observations from the parameters r R t0.1, 0.2, 0.3u or p R t0.8, 0.9u for
which we elicit h1

AB and h1
AB1 . Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0.
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Figure A.3: Histogram of Response Patterns for r P t0.1, 0.2, 0.3u and p P t0.3, 0.5u
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´ hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to
∆CR “ 0). The histogram covers the 2,508 observations from the parameters r P t0.1, 0.2, 0.3u or p P t0.3, 0.5u for
which we elicit h1

AB and h1
AB1 . Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0.
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Figure A.4: Predicting Stage 2 Choice Probabilities using Stage 1 Valuations
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0.
00

0.
25

0.
50

0.
75

1.
00

Pr
(A

|A
B)

-40 -30 -20 -10 0 10 20 30 40
Decomposed Preferences: p (E[h*

AB|stage 1] - stage 2 H)

Panel B: PrpA|tA,B1uq
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Panel E: PrpA|tA,B1uq
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Panel C: PrpC|tC,Duq
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Panel F: PrpC|tC,Duq
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Notes: Figure relates individual stage 1 measures of hXY ´H to stage 2 choice shares PrpX|tX,Y uq. Panels A-C use raw
stage 1 responses. Panels D-F use the estimated population distribution of preferences from the decomposition in Section
4.2 combined with a participant’s raw stage 1 valuations to generate a posterior preference measure Erh˚

XY |stage 1s for
that participant. For each x-axis, one hundred equally sized bins are constructed with approximately 168 observations
per bin. Within each bin, the stage 2 choice share is calculated to construct the y-axis. Due to a large number of
observations at some values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make valuations
comparable across pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed value of the measure
is predicted to yield a larger stage 2 effect the larger is p (see Supplementary Material D.3 for details).
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Figure A.5: Structural Estimates and Model Fit

Panel A: Upside Potential Estimates ´ Flexible Five Parameter Model
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Panel B: Upside Potential Estimates ´ Parametric Functional Form
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Panel C: CPT Probability Weighting Estimates ´ Flexible Functional Form
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Notes: This figure presents the estimated parameter functions and model fit for our model of upside potential with a
flexible (Panel A) and a parametric (Panel B) functional form, along with the best-fitting CPT model with a flexible
form (Panel C). The left panels depict the estimated functions, κ or π. The middle panels depict the in-sample fit for
our three valuations, hAB , hAB1 , and hCD. The right panels depict the in-sample fit for our three preference measures,
∆CR, ∆CC , and ∆MX .
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B Upside-Potential Model: Predictions

B.1 Predictions for the Upside-Potential Model

In this section, we provide a Proof of Proposition 1 and derive the additional model predictions

discussed in Section 5.2 of the main text. For completeness, we replicate the model assumptions

here. Given a lottery pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q, a person evaluates the lottery using decision

utility function:

U “ rqHH ` qMM s ` pqH ` qM q rqHκpHq ` qMκpMqs (B.1)

where κpxq is strictly increasing in x. For binary lotteries with qM “ 0, this formulation reduces to

U “ qHH ` q2HκpHq,

and for certain payments with qM “ 1, it reduces to

U “ M ` κpMq.

It is worth highlighting that this model respects first order stochastic dominance on its domain,

pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q. Consider two lotteries f “ pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q and

g “ pH 1, q1
H ;M 1, q1

M ; 0, 1´ q1
H ´ q1

M q and suppose f first order stochastically dominates (fosd) g. One

implication of f fosd g is that qM `qH ě q1
M `q1

H ; otherwise f would have higher probability of zero.

Standard results from EU with a monotonic utility function imply rqHH ` qMM s ě rq1
HH 1 ` q1

MM 1s

which in turn implies rqHκpHq ` qMκpMqs ě rq1
HκpH 1q ` q1

MκpM 1qs for increasing κp¨q. Combining

these two properties with qM ` qH ě q1
M ` q1

H implies

rqHH ` qMM s`pqH`qM q rqHκpHq ` qMκpMqs ě
“

q1
HH 1 ` q1

MM 1
‰

`pq1
H`q1

M q
“

q1
HκpH 1q ` q1

MκpM 1q
‰

and hence Upfq ě Upgq.

Applying this model to the context of our experiment, the triplet ph˚
AB, h

˚
AB1 , h˚

CDq solves

M ` κpMq “ ph˚
AB ` p2κph˚

ABq (B.2)

M ` κpMq “ prh˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rprκph˚

AB1q ` p1 ´ rqκpMqs (B.3)

rM ` r2κpMq “ prh˚
CD ` pprq2κph˚

CDq. (B.4)
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We then characterize behavior in this model in Proposition 1:

Proposition A1. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (B.2), (B.3), and (B.4).

For any pp, rq P p0, 1q2 and κpxq that is strictly increasing in X:

(1) A person’s ∆˚
CR, ∆

˚
CC , and ∆˚

MX satisfy:

(a) ∆˚
CR ą 0 if and only if κpMq ą p2κph˚

ABq ą p2κph˚
CDq;

∆˚
CR ă 0 if and only if κpMq ă p2κph˚

ABq ă p2κph˚
CDq; and

∆˚
CR “ 0 if and only if κpMq “ p2κph˚

ABq “ p2κph˚
CDq.

(b) ∆˚
CC ą 0 if and only if κpMq ą

´

p
2´p

¯

κph˚
AB1q ą

´

p
2´p

¯

κph˚
CDq;

∆˚
CC ă 0 if and only if κpMq ă

´

p
2´p

¯

κph˚
AB1q ă

´

p
2´p

¯

κph˚
CDq; and

∆˚
CC “ 0 if and only if κpMq “

´

p
2´p

¯

κph˚
AB1q “

´

p
2´p

¯

κph˚
CDq.

(c) ∆˚
MX ą 0 if and only if κpMq ă pκph˚

AB1q ă pκph˚
ABq;

∆˚
MX ă 0 if and only if κpMq ą pκph˚

AB1q ą pκph˚
ABq; and

∆˚
MX “ 0 if and only if κpMq “ pκph˚

AB1q “ pκph˚
ABq.

(2) ∆˚
CR ď 0 implies ∆˚

CC ă 0 and ∆˚
MX ą 0, and ∆˚

CC ď 0 implies ∆˚
MX ą 0. (Equivalently,

∆˚
MX ď 0 implies ∆˚

CR ą 0 and ∆˚
CC ą 0, and ∆˚

CC ě 0 implies ∆˚
CR ą 0.)

(3) The person must exhibit one of the following seven patterns of behavior:

P1: 0 ą ∆˚
CR ą ∆˚

CC and ∆˚
MX ą 0 (RCRP´RCCP´MXP)

P12: 0 “ ∆˚
CR ą ∆˚

CC and ∆˚
MX ą 0 (�CRP´RCCP´MXP)

P2: ∆˚
CR ą 0 ą ∆˚

CC and ∆˚
MX ą 0 (CRP´RCCP´MXP)

P23: ∆˚
CR ą ∆˚

CC “ 0 and ∆˚
MX ą 0 (CRP´�CCP´MXP)

P3: ∆˚
CR ą ∆˚

CC ą 0 and ∆˚
MX ą 0 (CRP´CCP´MXP)

P34: ∆˚
CR “ ∆˚

CC ą 0 and ∆˚
MX “ 0 (CRP´CCP´ �MXP)

P4: ∆˚
CC ą ∆˚

CR ą 0 and ∆˚
MX ă 0 (CRP´CCP´RMXP).

Proof:

(1a) Recall that ∆˚
CR “ h˚

AB ´h˚
CD, where h

˚
AB and h˚

CD are derived from equations (B.2) and (B.4).

We can rewrite equation (B.4) as

M ` κpMq “ ph˚
CD ` p2κph˚

CDq ` p1 ´ rq
`

κpMq ´ p2κph˚
CDq

˘

,
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and combining this equation with equation (B.2) yields

ph˚
AB ` p2κph˚

ABq “ ph˚
CD ` p2κph˚

CDq ` p1 ´ rq
`

κpMq ´ p2κph˚
CDq

˘

.

Proof of CD condition: Because ph ` p2κphq is strictly increasing in h, this equation implies h˚
AB ą

h˚
CD if and only if κpMq ą p2κph˚

CDq, h˚
AB ă h˚

CD if and only if κpMq ă p2κph˚
CDq, and h˚

AB “ h˚
CD

if and only if κpMq “ p2κph˚
CDq.

Proof of AB condition: Define fphq “ ph ` p2κphq ` p1 ´ rqpκpMq ´ p2κphqq, so h˚
CD is defined by

fph˚
CDq “ M ` κpMq. Because f is strictly increasing in h, h˚

AB ą h˚
CD if and only if fph˚

ABq ą

M ` κpMq, which based on equation (B.2) holds if and only if κpMq ą p2κph˚
ABq. Analogously,

h˚
AB ă h˚

CD if and only if fph˚
ABq ă M ` κpMq or κpMq ă p2κph˚

ABq, and h˚
AB “ h˚

CD if and only if

fph˚
ABq “ M ` κpMq or κpMq “ p2κph˚

ABq.

Finally, note that when ∆˚
CR ą 0 and thus h˚

AB ą h˚
CD, κ strictly increasing implies p2κph˚

ABq ą

p2κph˚
CDq. Analogously, ∆˚

CR ă 0 implies p2κph˚
ABq ă p2κph˚

CDq, and ∆˚
CR “ 0 implies p2κph˚

ABq “

p2κph˚
CDq. The result follows.

(1b) Recall that ∆˚
CC “ h˚

AB1 ´ h˚
CD, where h˚

AB1 and h˚
CD are derived from equations (B.3) and

(B.4). We can rewrite equation (B.3) as

rM ` r2κpMq “ prh˚
AB1 ` pprq2κph˚

AB1q ` p1 ´ rqr ppκph˚
AB1q ´ p2 ´ pqκpMqq ,

and combining this equation with equation (B.4) yields

prh˚
CD ` pprq2κph˚

CDq “ prh˚
AB1 ` pprq2κph˚

AB1q ` p1 ´ rqr ppκph˚
AB1q ´ p2 ´ pqκpMqq .

Proof of AB1 condition: Because prh ` pprq2κphq is strictly increasing in h, this equation implies

h˚
AB1 ą h˚

CD if and only if κpMq ą

´

p
2´p

¯

κph˚
AB1q, h˚

AB1 ă h˚
CD if and only if κpMq ă

´

p
2´p

¯

κph˚
AB1q,

and h˚
AB1 “ h˚

CD if and only if κpMq “

´

p
2´p

¯

κph˚
AB1q.

Proof of CD condition: Define fphq “ prh ` pprq2κphq ` p1 ´ rqr ppκphq ´ p2 ´ pqκpMqq, so h˚
AB1

is defined by fph˚
AB1q “ rM ` r2κpMq. Because f is strictly increasing in h, h˚

AB1 ą h˚
CD if and

only if fph˚
CDq ă rM ` r2κpMq, which holds if and only if κpMq ą

´

p
2´p

¯

κph˚
CDq. Analogously,

h˚
AB1 ă h˚

CD if and only if fph˚
CDq ą rM ` r2κpMq or κpMq ă

´

p
2´p

¯

κph˚
CDq, and h˚

AB1 “ h˚
CD if

and only if fph˚
CDq “ rM ` r2κpMq or κpMq “

´

p
2´p

¯

κph˚
CDq.
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Finally, note that when ∆˚
CC ą 0 and thus h˚

AB1 ą h˚
CD, κ strictly increasing implies

´

p
2´p

¯

κph˚
AB1q ą

´

p
2´p

¯

κph˚
CDq. Analogously, ∆˚

CC ă 0 implies
´

p
2´p

¯

κph˚
AB1q ă

´

p
2´p

¯

κph˚
CDq, and ∆˚

CC “ 0 implies
´

p
2´p

¯

κph˚
AB1q “

´

p
2´p

¯

κph˚
CDq.

(1c) Recall that ∆˚
MX “ h˚

AB ´ h˚
AB1 , where h˚

AB and h˚
AB1 are derived from equations (B.2) and

(B.3). We can rewrite equation (B.3) as

M ` κpMq “ ph˚
AB1 ` p2κph˚

AB1q ` p1 ´ rqp1 ´ pq ppκph˚
AB1q ´ κpMqq ,

and combining this equation with equation (B.2) yields

ph˚
AB ` p2κph˚

ABq “ ph˚
AB1 ` p2κph˚

AB1q ` p1 ´ rqp1 ´ pq ppκph˚
AB1q ´ κpMqq .

Proof of AB1 condition: Because ph ` p2κphq is strictly increasing in h, this equation implies h˚
AB ą

h˚
AB1 if and only if κpMq ă pκph˚

AB1q, h˚
AB ă h˚

AB1 if and only if κpMq ą pκph˚
AB1q, and h˚

AB “ h˚
AB1

if and only if κpMq “ pκph˚
AB1q.

Proof of AB condition: Define fphq “ ph ` p2κphq ` p1 ´ rqp1 ´ pqppκphq ´ κpMqq, so h˚
AB1 is

defined by fph˚
AB1q “ M ` κpMq. Because f is strictly increasing in h, h˚

AB ą h˚
AB1 if and only if

fph˚
ABq ą M ` κpMq, which holds if and only if κpMq ă pκph˚

ABq. Analogously, h˚
AB ă h˚

AB1 if and

only if fph˚
ABq ă M `κpMq or κpMq ą pκph˚

ABq, and h˚
AB “ h˚

AB1 if and only if fph˚
ABq “ M `κpMq

or κpMq “ pκph˚
ABq.

Finally, note that when ∆˚
MX ą 0 and thus h˚

AB ą h˚
AB1 , κ strictly increasing implies pκph˚

AB1q ă

pκph˚
ABq. Analogously, ∆˚

MX ă 0 implies pκph˚
AB1q ą pκph˚

ABq, and ∆˚
MX “ 0 implies pκph˚

AB1q “

pκph˚
ABq. The result follows.

(2) From 1a, ∆˚
CR ď 0 if and only if κpMq ď p2κph˚

ABq ď p2κph˚
CDq. Because p2 ă

p
2´p for any

p P p0, 1q, it follows that κpMq ă
p

2´pκph˚
CDq, and thus from 1b it follows that ∆˚

CC ă 0. Similarly,

because p2 ă p for any p P p0, 1q, it follows that κpMq ă pκph˚
ABq, and thus from 1c it follows that

∆˚
MX ą 0.

From 1b, ∆˚
CC ď 0 if and only if p

2´pκph˚
AB1q. Because p

2´p ă p for any p P p0, 1q, it follows that

κpMq ă pκph˚
AB1q, and thus from 1c it follows that ∆˚

MX ą 0. The result follows (and note that the

“equivalently” sentence follows directly from the initial sentence).
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(3) First, recall that ∆˚
MX “ ∆˚

CR´∆˚
CC , and thus ∆˚

MX ą 0 implies ∆˚
CR ą ∆˚

CC , ∆
˚
MX “ 0 implies

∆˚
CR “ ∆˚

CC , and ∆˚
MX ă 0 implies ∆˚

CR ă ∆˚
CC . The result follows directly from this observation

combined with part 2. Specifically, when ∆˚
CR ď 0, we must have ∆˚

CC ă 0 and ∆˚
MX ą 0, and thus

∆˚
CR ą ∆˚

CC , yielding patterns P1 and P12. When ∆˚
CR ą 0 but ∆˚

CC ď 0, we must have ∆˚
MX ą 0

and thus ∆˚
CR ą ∆˚

CC , yielding patterns P2 and P23. When ∆˚
CR ą 0 and ∆˚

CC ą 0 but ∆˚
MX ě 0,

we must have ∆˚
CR ě ∆˚

CC , yielding patterns P3 and P34. Finally, When ∆˚
CR ą 0, ∆˚

CC ą 0, and

∆˚
MX ă 0, we must have ∆˚

CR ă ∆˚
CC , yielding pattern P4. This completes all possibilities consistent

with part 2.

■

In the main text, we discuss the importance of the special case of our model where the function

κ is linear (i.e., κpxq “ ϕx for some ϕ ą 0). This case highlights that MXP emerges in our model

due to the way that probabilities enter, and not because the function κ has some special structure.

Proposition A2. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (B.2), (B.3), and (B.4),

and further suppose that κpxq “ ϕx for some ϕ ą 0. For any pp, rq P p0, 1q2, we must have:

(1) ∆˚
CR ą 0;

(2) ∆˚
MX ą 0; and

(3) ∆˚
CC could be positive, negative, or zero.

Proof: When κpzq “ ϕz, equation (B.2) becomes

M ` ϕM “ ph˚
AB ` p2ϕh˚

AB ðñ h˚
AB “

1 ` ϕ

1 ` pϕ

M

p
,

equation (B.3) becomes

M ` ϕM “ prh˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rprϕh˚

AB1 ` p1 ´ rqϕM s

ðñ h˚
AB1 “

1 ` p2 ´ p ´ r ` prqϕ

1 ` p1 ´ r ` prqϕ

M

p
,

and equation (B.4) becomes

rM ` r2ϕM “ prh˚
CD ` pprq2ϕh˚

CD ðñ h˚
CD “

1 ` rϕ

1 ` prϕ

M

p
.
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We have ∆˚
CR ą 0 if and only if h˚

AB ą h˚
CD, which holds if and only if

1 ` ϕ

1 ` pϕ
ą

1 ` rϕ

1 ` prϕ
ðñ p1 ` ϕqp1 ` prϕq ą p1 ` rϕqp1 ` pϕq

ðñ 1 ` ϕ ` prϕ ` prϕ2 ą 1 ` rϕ ` pϕ ` prϕ2 ðñ ϕp1 ´ rqp1 ´ pq ą 0.

Since this inequality holds for any pp, rq P p0, 1q2, ∆˚
CR ą 0 for any pp, rq P p0, 1q2.

Next, we have ∆˚
MX ą 0 if and only if h˚

AB ą h˚
AB1 , which holds if and only if

1 ` ϕ

1 ` pϕ
ą

1 ` p2 ´ p ´ r ` prqϕ

1 ` p1 ´ r ` prqϕ
ðñ p1`ϕqp1`p1´r`prqϕq ą p1`p2´p´r`prqϕqp1`pϕq

ðñ 1 ` p2 ´ r ` prqϕ ` p1 ´ r ` prqϕ2 ą 1 ` p2 ´ r ` prqϕ ` p2p ´ p2 ´ pr ` p2rqϕ2

ðñ 1 ´ r ´ 2p ` 2pr ` p2 ´ p2r ą 0 ðñ p1 ´ rqp1 ´ pq2 ą 0.

Since this inequality holds for any pp, rq P p0, 1q2, it follows that ∆˚
MX ą 0 for any pp, rq P p0, 1q2.

Finally, it is straightforward to construct examples where ∆˚
CC is positive, zero, or negative.

■

According to Proposition A2, our model with a linear κ function predicts behavior must take on

one of patterns P2, P23, or P3. While a linear κ function can generate our model pattern P2, we

describe in Section 5.1 how a linear κ cannot explain all instances of pattern P2. We provide the

details in the following example.

Example: Explaining Mean Valuations when pp “ 0.5, r “ 0.2q with a κ Function

In our stage 1 data, when p “ 0.5 and r “ 0.2, the mean responses are hAB “ 38, hAB1 “ 29

and hCD “ 33. Hence, part 1 of Proposition 1 implies that κ must satisfy:

1

2
κp29q ą

1

3
κp29q ą κp15q ą

1

4
κp38q.

We show here that one can combine the second and third inequalities to derive that:

κp29q ´ κp15q

14
ą

κp15q ´ κp0q

15
and

κp29q ´ κp15q

14
ą

κp38q ´ κp29q

9
.
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The second inequality implies κp29q ą 3κp15q, from which it is straightforward to derive

κp29q ´ κp15q

14
ą

κp29q ´ κp15q

15
ą 2

κp15q ´ κp0q

15
ą

κp15q ´ κp0q

15
.

The third inequality implies κp38q ă 4κp15q, which when combined with κp29q ą 3κp15q from

the middle inequality yields κp38q ´ κp29q ă κp15q ´ κp0q. From this, we can derive

κp38q ´ κp29q

9
ă

κp15q ´ κp0q

9
ă 2

κp15q ´ κp0q

15
ă

κp29q ´ κp15q

14
.

In Section 5.2.1, we describe the relationship predicted by our model between whether a person

exhibits a CRP and their risk aversion in their AB valuation—where a person is risk-averse in the

AB valuation when h˚
AB ą M{p, and risk-loving when h˚

AB ă M{p. That exploration is based on

the following proposition:

Proposition A3. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (B.2), (B.3), and (B.4).

For any pp, rq P p0, 1q2 and κpxq that is strictly increasing in x:

(1) A person’s h˚
AB satisfies:

(a) h˚
AB ą M{p if and only if κpMq ą p2κph˚

ABq;

(b) h˚
AB ă M{p if and only if κpMq ă p2κph˚

ABq; and

(c) h˚
AB “ M{p if and only if κpMq “ p2κph˚

ABq.

(2) The relationship between a person’s h˚
AB and ∆˚

CR satisfies:

(a) h˚
AB ą M{p if and only if ∆˚

CR ą 0;

(b) h˚
AB ă M{p if and only if ∆˚

CR ă 0; and

(c) h˚
AB “ M{p if and only if ∆˚

CR “ 0.

Proof: (1) From equation (B.2), h˚
AB is derived from

M ` κpMq “ ph˚
AB ` p2κph˚

ABq.

Applying this equation, κpMq ą p2κph˚
ABq if and only ifM ă ph˚

AB or h˚
AB ą M{p; κpMq ă p2κph˚

ABq

if and only if M ą ph˚
AB or h˚

AB ă M{p; and κpMq “ p2κph˚
ABq if and only if M “ ph˚

AB or

h˚
AB “ M{p. (2) Follows directly from part 1 combined with Proposition A1 part 1a.
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■

Finally, in Section 6, we discuss the implications of our model for event splits—that is, how people

feel when choosing between a lottery pH, pq versus a lottery pH ` z, p{2;H ´ z, p{2q. Note that the

second lottery is obtained from the first by splitting the “event” of a probability p of winning H into

two “events”, each with probability p{2, that maintain the expected value of the lottery. Several

recent papers have found evidence that people dislike such splits, and one might wonder whether

such evidence is inconsistent with our finding of mixture-loving preferences.

In our model, a person’s preferences for or against event splitting can be determined separately

from their preferences for or against mixtures. In particular, Proposition A2 demonstrated that an

MXP emerges in our model due to the way that probabilities enter our model. In contrast, the

following proposition establishes that preferences for or against event splitting depend on the local

curvature of the function κ.

Proposition A4. Suppose a person is presented with a choice between lottery pH, pq and lottery

pH ` z, p{2;H ´ z, p{2q, and the person chooses based on the decision utility in equation (B.1). For

any pp, rq P p0, 1q2:

(1) If κ is linear on domain rH ´ z,H ` zs, then pH, pq „ pH ` z, p{2;H ´ z, p{2q;

(2) If κ is concave on domain rH ´ z,H ` zs, then pH, pq ą pH ` z, p{2;H ´ z, p{2q; and

(3) If κ is convex on domain rH ´ z,H ` zs, then pH, pq ă pH ` z, p{2;H ´ z, p{2q.

Proof: Applying equation (B.1), the decision-utility comparison is

pH ` p2κpHq :
p

2
pH ` zq `

p

2
pH ´ zq ` p

”p

2
κpH ` zq `

p

2
κpH ´ zq

ı

or

pH ` p2 rκpHqs : pH ` p2
„

1

2
κpH ` zq `

1

2
κpH ´ zq

ȷ

or

κpHq :
1

2
κpH ` zq `

1

2
κpH ´ zq.

The result follows directly.

■
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B.2 Distinguishing Upside Potential from Probability Weighting

In Supplementary Material F, we show that our model of upside potential provides a substantially

better quantitative fit of our aggregate data than either CPT or OPT even when permitting flexible

functional forms for probability weighting. In this section, we consider what properties of our model

are fundamentally distinct from formulations of probability weighting which permit this improved

fit.1

We focus on the different ways that probabilities enter into the models. Hence, throughout this

section, we assume a linear κ function for our model (i.e., κpzq “ ϕz) and a linear value function for

CPT or OPT (i.e., vpzq “ z).2

We first assess whether either OPT or CPT with a flexible functional form for π could replicate

the predictions from our upside-potential model. Under OPT with a linear value function, the

indifference values ph˚
AB, h

˚
AB1 , h˚

CDq are determined from:

M “ πppqh˚
AB

M “ πpprqh˚
AB1 ` πp1 ´ rqM

πprqM “ πpprqh˚
CD

Under CPT with a linear value function, the indifference values are determined from:

M “ πppqh˚
AB

M “ πpprqh˚
AB1 ` rπppr ` 1 ´ rq ´ πpprqsM

πprqM “ πpprqh˚
CD

As discussed above, OPT and CPT coincide for binary lotteries, but not for the trinary lottery B1.

When κpzq “ ϕz, under our upside-potential model, rearranging the conditions from the proof of

Proposition A.2, the indifference values are determined from

M “
p ` p2ϕ

1 ` ϕ
h˚
AB (B.5)

M “
pr ` ppr ` 1 ´ rqpprqϕ

1 ` ϕ
h˚
AB1 `

p1 ´ rq ` ppr ` 1 ´ rqp1 ´ rqϕ

1 ` ϕ
M (B.6)

r ` r2ϕ

1 ` ϕ
M “

pr ` pprq2ϕ

1 ` ϕ
h˚
CD (B.7)

1We emphasize that a comparison of prospect theory to our model on our data is apt in the sense that the probability
weighting function in prospect theory was developed specifically to speak to anomalies in CR and CC problems.

2For CPT or OPT, adding a slope parameter to the value function would not change predictions.
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If we were making predictions for decisions that involve only sure amounts or binary lotteries

with one winning outcome, then either OPT or CPT with probability weighting function πpqq “

pq ` q2ϕq{p1 ` ϕq will generate the same predictions as our upside-potential model. This general

point is reflected in the equations above by the fact that the h˚
AB and h˚

CD conditions would be the

same in all three models. Hence, for decisions that involve only sure amounts or binary lotteries with

one winning outcome, our upside-potential model is a special case of either OPT or CPT, and thus

if we had data on only such decisions, our model could not outperform OPT or CPT.

It is for decisions that involve trinary lotteries with two winning outcomes that neither OPT nor

CPT can replicate the predictions of our model. To see this under OPT, note that it would need to

be the case that the weight on h˚
AB1 in equation (B.6) can be expressed purely as a function of pr,

the weight on M in equation (B.6) can be expressed purely as a function of p1 ´ rq, and those two

functions would need to be the same. Neither of the first two conditions holds, and thus clearly the

third does not as well.

To see this under CPT, note that we can rewrite the CPT condition for h˚
AB1 as

M “ πpprq rh˚
AB1 ´ M s ` πppr ` 1 ´ rqM

and the upside-potential condition for h˚
AB1 as

M “
pr ` ppr ` 1 ´ rqpprqϕ

1 ` ϕ
rh˚

AB1 ´ M s `
ppr ` 1 ´ rq ` ppr ` 1 ´ rq2ϕ

1 ` ϕ
M.

Here, we can match the weight on M if we use πpqq “ pq`q2ϕq{p1`ϕq, but there is no way to express

the weight on ph˚
AB1 ´ Mq purely as a function of pr. For decisions that involve trinary lotteries,

our upside-potential model is therefore distinct from OPT and CPT even when we assume a linear

κ function.

This analysis highlights a key difference between our model and OPT or CPT. For trinary lotteries,

both CPT and OPT require that the weight applied to each outcome depend only on that outcome’s

probability (or cumulative probability in the case of CPT). For lottery B1 this means the weight on

the highest outcome h˚
AB1 must be a function solely of that outcome’s probability, in this case pr. In

contrast, under the upside-potential model, the weight applied to outcome h˚
AB1 is a function both of

pr and the total probability of winning, in this case pr ` 1´ r. This fundamental distinction derives

from the central psychology of the upside potential model: that winning probabilities can matter

more the greater is the total chance of winning.
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We can obtain further insights on the differences between the models by comparing the qualitative

predictions for our experimental tasks of the upside-potential model to the those of OPT or CPT

when we assume probability weighting function πpqq “ pq ` q2ϕq{p1 ` ϕq.

Proposition A2 establishes that for linear κ, the upside potential model predicts both CRP and

MXP, with no prediction for the CC preference. As described above, with probability weighting

function πpqq “ pq ` q2ϕq{p1 ` ϕq, OPT and CPT both replicate the predictions of the upside-

potential model for the AB and CD tasks and thus both predict a CRP. Proposition A5 below

establishes that OPT and CPT with this weighting function both further predict a CCP and an

RMXP. In other words, the two models would disagree on the MX preference, and might disagree on

the CC preference.

Proposition A5. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from OPT or CPT with a linear value

function and probability weighting function πpqq “
q`q2ϕ
1`ϕ . For any pp, rq P p0, 1q2, we must have:

(1) ∆˚
CR ą 0;

(2) ∆˚
CC ą 0; and

(3) ∆˚
MX ă 0.

Proof: First note that part (1) follows from part (1) of Proposition A2 combined with the logic

in the text that, when using πpqq “
q`q2ϕ
1`ϕ , both OPT and CPT replicate the predictions from the

upside-potential model for the AB task and the CD task.

Next, note that under both OPT and CPT, the condition for h˚
AB is M “

p`p2ϕ
1`ϕ h˚

AB, and thus

for any r P p0, 1q,

M “ r

ˆ

p ` p2ϕ

1 ` ϕ

˙

h˚
AB`p1´rqpMq “

ˆ

pr ` p2rϕ

1 ` ϕ

˙

ph˚
AB´Mq`

ˆ

p1 ´ r ` prq ` p1 ´ r ` p2rqϕ

1 ` ϕ

˙

M.

Consider the condition for h˚
AB1 under OPT. Define fphq ”

pr`pprq2ϕ
1`ϕ h`

p1´rq`p1´rq2ϕ
1`ϕ M , so under

OPT, h˚
AB1 is defined by M “ fph˚

AB1q. Because for any r P p0, 1q, r
´

p`p2ϕ
1`ϕ

¯

ą
pr`pprq2ϕ

1`ϕ and

p1 ´ rq ą
p1´rq`p1´rq2ϕ

1`ϕ , we must have M ą fph˚
ABq. Since f is increasing in h, it follows that

h˚
AB1 ą h˚

AB and thus ∆˚
MX ă 0. Finally, the combination of ∆˚

CR ą 0 and ∆˚
MX ă 0 implies

∆˚
CC ą 0.

Now consider the condition for h˚
AB1 under CPT. Define

gphq ”

ˆ

pr ` pprq2ϕ

1 ` ϕ

˙

ph ´ Mq `

ˆ

p1 ´ r ` prq ` p1 ´ r ` prq2ϕ

1 ` ϕ

˙

M,
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so under CPT, h˚
AB1 is defined by M “ gph˚

AB1q. Because for any r P p0, 1q,
´

pr`p2rϕ
1`ϕ

¯

ą
pr`pprq2ϕ

1`ϕ and
´

p1´r`prq`p1´r`p2rqϕ
1`ϕ

¯

ą

´

p1´r`prq`p1´r`prq2ϕ
1`ϕ

¯

, we must have M ą gph˚
ABq. Since g is increasing

in h, it follows that h˚
AB1 ą h˚

AB and thus ∆˚
MX ă 0. Finally, the combination of ∆˚

CR ą 0 and

∆˚
MX ă 0 implies ∆˚

CC ą 0.

■

Although it is not relevant for our analysis in this paper, we highlight one further distinction

between our upside-potential model and CPT. Under CPT, the weights attached to outcomes depend

on their relative ranks, whereas under our upside-potential model, they do not. To illustrate, consider

a trinary lottery px1, q1;x2, q2q. Under CPT, if x1 ą x2 ą 0, this lottery is evaluated using πpq1qx1 `

rπpq1 ` q2q ´ πpq1qsx2, whereas if x2 ą x1 ą 0, it is evaluated using πpq2qx2 ` rπpq1 ` q2q ´ πpq2qsx1.

Under our model with a linear κ function, for any x1 ą 0 and x2 ą 0, it is evaluated using r1` pq1 `

q2qϕsq1x1 ` r1 ` pq1 ` q2qϕsq2x2. The weights that are applied to outcomes x1 and x2 under upside

potential are symmetric—depending only on each outcome’s probability and the total probability of

winning—regardless of whether x1 ą x2 or x2 ą x1. This symmetry may be a valuable feature of the

upside potential model given recent evidence of rank-independence in choice (Bernheim and Sprenger

(2020); Bernheim et al. (2022)).
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