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A Additional Tables and Figures

Table A.1: Participant Demographics

(1) (2) (3) (4) (5) (6)

Full Any Any Any Any Any
Sample r=01 r=02 r=03 r=05 r=038

Number of Participants 2,102 1,247 1,250 1,246 1,221 1,212
Time Taken (in minutes) 27.3 27.2 27.3 27.3 27.3 274
Age 25.2 25.1 25.1 25.4 25.2 25.2
Prolific Score 99.8 99.8 99.8 99.8 99.8 99.8
Number of Approvals 304.9 304.7 298.7 310.5 302.9 305.5
Female 50.0 50.6 50.2 49.9 49.5 50.3
Current Student 41.9 42.0 43.7 41.0 40.1 42.0
College Degree 62.1 62.4 61.8 62.5 62.7 62.5
Working (full- or part-time) 59.3 58.5 59.3 60.8 58.9 60.1
English First Language 57.9 58.9 57.2 59.1 58.9 56.8
Attention Checks

Incentive Question Correct  95.5 95.4 95.8 95.7 95.8 95.6

Passed Attention Check 96.3 96.2 96.6 96.4 96.2 96.5
Comprehension Questions

MPL Question Correct 85.2 84.5 85.5 84.5 85.9 84.7

Bin Question Correct 79.4 79.7 79.7 78.9 78.5 79.9

Both Questions Correct 69.4 69.5 69.7 67.7 69.4 69.3
Current Residency

United States 24.6 25.3 23.2 25.2 26.0 24.6

United Kingdom 38.4 37.9 39.8 39.3 37.3 38.0

Portugal 21.8 21.7 22.5 20.5 21.5 22.9

Spain 5.5 5.3 5.0 5.6 5.2 5.8

Germany 3.1 3.4 2.9 3.0 3.1 2.7

Notes: Column (1): participant demographics for all 2,102 participants. Columns (2) to Column (6):
participant demographics if ever assigned to a given value of r across four possible (p,r) pairs.



Table A.2: Mean Valuations by p and r

haB hap hep hep N '\B by g N
Panel A: r =0.1
p=0.3 36.78 23.83 31.10 34.43 406 36.24 24.92 208
p=0.5 37.99 27.77 31.50 32.59 421 37.62 28.47 203
p=0.8 41.34 36.52 34.91 34.86 422 40.50 35.14 205
p=20.9 40.37 35.20 34.37 33.81 430 40.36 36.38 219
Panel B: r = 0.2
p=0.3 35.63 26.35 32.16 32.07 425 34.89 23.95 212
p=0.5 38.57 29.17 34.00 32.82 468 39.09 30.35 207
p=0.8 39.56 36.36 36.52 36.46 419 38.79 35.59 216
p=0.9 39.42 38.71 35.20 35.34 398 40.22 39.68 194
Panel C: r = 0.3
p=0.3 36.48 29.14 34.49 34.25 399 36.50 28.76 211
p=0.5 39.65 32.95 35.55 35.65 389 38.74 33.89 194
p=0.8 42.18 39.37 35.92 36.44 474 40.88 39.01 249
p=20.9 39.32 40.14 37.09 37.62 435 39.00 40.26 213
Panel D: » =0.5
p=20.3 37.38 30.17 38.23 38.00 426 37.64 31.48 207
p=0.5 39.28 34.37 39.51 39.58 412 38.62 35.17 221
p=0.8 38.75 37.61 37.82 37.71 388 38.87 36.21 191
p=20.9 38.58 38.67 37.43 36.78 425 39.12 37.36 197
Panel E: r =0.8
p=0.3 37.34 34.54 36.73 36.89 446 36.73 35.07 237
p=20.5 38.04 37.45 38.67 38.25 412 38.81 36.98 193
p=0.8 40.64 41.25 42.56 42.56 399 40.50 41.84 215
p=20.9 38.32 39.48 37.87 38.01 414 38.21 38.71 212

Notes: Table presents mean valuations for each (p,r) combination. Each participant provides a valuation
for four (p,r) combinations subject to the restriction that they see each p exactly once. For two (p,r) pairs,
participants report all six valuations: hag, hap', hcp, Wap, h'4p, and hep. For the remaining two (p, r) pairs,
participants provide four valuations: hap, hap', hcp, and hizp. We randomly label multiple valuations hxy
or h'xy, so that it was equally likely that either was presented first.



Table A.3: Correlations Between hxy and h'yy by p and r

o) ©) ©) @ )
r=0.1 r=0.2 r=0.3 r=0.5 r=0.8
Panel A: p(hap,,p)
p=0.3 0.256 0.369 0.422 0.372 0.617
p=20.5 0.402 0.464 0.540 0.586 0.696
p=0.8 0.428 0.545 0.395 0.447 0.641
p=20.9 0.314 0.497 0.402 0.519 0.548
Panel B: p(hap,hyg5)
p=20.3 0.254 0.492 0.439 0.433 0.545
p=20.5 0.320 0.406 0.445 0.619 0.614
p=20.8 0.564 0.444 0.461 0.475 0.584
p=0.9 0.292 0.514 0.385 0.355 0.483
Panel C: p(hcp, hep)
p=20.3 0.452 0.453 0.570 0.538 0.541
p=20.5 0.474 0.512 0.410 0.590 0.583
p=20.8 0.435 0.484 0.461 0.389 0.529
p=20.9 0.462 0.431 0.485 0.453 0.432

Notes: Table reports correlation coefficients calculated using all valuations for which there are multiple measures
for a given individual and (p,r). Multiple measures of hcp are available for all observations, and therefore an
average sample of 420 observations is used to compute each p(hcp, hep). Multiple measures of hap and h g/ are
available for only half of observations, and therefore an average sample of 210 observations is used to compute each
p(hap,h/ap) and p(hap, W, p/). The exact sample sizes for each cell are listed in Appendix Table A.2.



Table A.4: Means and Sign Tests

M 2) ®3) @) () (6) @) (®)
Number of Cases
Probability Common A Mean Test _ Sign Test A
(p) Ratio (r) (Mean) (p-value) A>0 A=0 A<0 (p-value)  (Median)
Panel A: Test of A%, =0
0.3 0.1 5.68 0.000 224 65 117 0.000 4
0.3 0.2 3.48 0.000 208 60 157 0.009 0
0.3 0.3 1.99 0.016 186 72 141 0.015 0
0.3 0.5 —0.85 0.243 160 93 173 0.511 0
0.3 0.8 0.61 0.363 176 79 191 0.465 0
0.5 0.1 6.49 0.000 245 71 105 0.000 5
0.5 0.2 4.57 0.000 249 93 126 0.000 1
0.5 0.3 4.10 0.000 215 52 122 0.000 2
0.5 0.5 —0.23 0.722 153 97 162 0.652 0
0.5 0.8 —0.63 0.295 146 112 154 0.686 0
0.8 0.1 6.42 0.000 278 50 94 0.000 6
0.8 0.2 3.04 0.000 239 60 120 0.000 3
0.8 0.3 6.26 0.000 299 62 113 0.000 4
0.8 0.5 0.93 0.214 176 65 147 0.119 0
0.8 0.8 —1.92 0.004 121 76 202 0.000 -1
0.9 0.1 6.00 0.000 291 55 84 0.000 3
0.9 0.2 4.22 0.000 236 61 101 0.000 2
0.9 0.3 2.23 0.002 230 74 131 0.000 1
0.9 0.5 1.16 0.112 191 7 157 0.077 0
0.9 0.8 0.45 0.443 177 62 175 0.958 0
Panel B: Test of AL, =0
0.3 0.1 —10.60 0.000 93 36 277 0.000 -8
0.3 0.2 —5.72 0.000 129 50 246 0.000 -3
0.3 0.3 —5.11 0.000 121 59 219 0.000 -2
0.3 0.5 —7.83 0.000 96 59 271 0.000 —6
0.3 0.8 —2.35 0.002 156 73 217 0.002 0
0.5 0.1 —4.81 0.000 127 54 240 0.000 —4
0.5 0.2 —3.65 0.000 128 69 271 0.000 —4
0.5 0.3 —2.70 0.002 119 64 206 0.000 -1
0.5 0.5 —5.22 0.000 106 67 239 0.000 —4
0.5 0.8 —0.80 0.240 136 85 191 0.003
0.8 0.1 1.66 0.062 171 86 165 0.785 0
0.8 0.2 —0.10 0.894 164 60 195 0.113 0
0.8 0.3 2.93 0.000 216 77 181 0.088 0
0.8 0.5 —0.11 0.887 155 76 157 0.955 0
0.8 0.8 —1.31 0.071 149 46 204 0.004 -1
0.9 0.1 1.39 0.059 170 111 149 0.263 0
0.9 0.2 3.36 0.000 182 81 135 0.010 0
0.9 0.3 2.52 0.002 193 70 172 0.295 0
0.9 0.5 1.89 0.009 170 73 182 0.558 0
0.9 0.8 1.46 0.026 170 72 172 0.957 0
Panel C: Test of A% =0
0.3 0.1 1132 0.000 143 27 38 0.000 9
0.3 0.2 10.94 0.000 161 18 33 0.000 10
0.3 0.3 7.74 0.000 127 43 41 0.000 5
0.3 0.5 6.16 0.000 127 35 45 0.000 5
0.3 0.8 1.67 0.031 114 41 82 0.027 0
0.5 0.1 9.15 0.000 144 30 29 0.000 10
0.5 0.2 8.74 0.000 139 38 30 0.000 6
0.5 0.3 4.85 0.000 113 36 45 0.000 4
0.5 0.5 3.45 0.000 111 48 62 0.000 1
0.5 0.8 1.82 0.048 89 48 56 0.008 0
0.8 0.1 5.36 0.000 132 35 38 0.000 5
0.8 0.2 3.19 0.001 125 35 56 0.000 4
0.8 0.3 1.87 0.049 144 36 69 0.000 2
0.8 0.5 2.66 0.009 107 32 52 0.000 2
0.8 0.8 -1.34 0.117 70 53 92 0.099 0
0.9 0.1 3.98 0.001 134 37 48 0.000 3
0.9 0.2 0.54 0.634 87 37 70 0.201 0
0.9 0.3 —1.26 0.218 86 40 87 1.000 0
0.9 0.5 1.76 0.103 95 45 57 0.003 0
0.9 0.8 —0.50 0.519 79 42 91 0.399 0

Notes: Means test and sign test for Acgr, Acc, and Aprx for each (p,r) combination. We conduct a two-sided t-test
for the difference in means. We also conduct a two-sided sign test, where we exclude all ties (instances of Az = 0). See
Supplementary Material D.1 for test descriptions.



"SMOI ()7 [[® I0A0 soSeloae sjuesoxd aul] [euy oy, "(s[relop

10] 1'¢ Tetore]y Arejusma[ddng pue g'§ UOIJIAG 99S) SOOURLIBAOD PUR sodUeLIeA o[dures jueAd[ol WO Paje[noed sejyew)se uolpisodurodep sjpiodor o[qe], :S9ION

870 860 19°0 8979 ¢6°19 ¢8'16 ¢9'€6 L6°L8 TLTIL 6168 <C91c¢l SGEEIT ¥vI'9¢ 97 ¥E€ TL'8E 8E€'0 €90
€70 €9°0 ¥4 0 7409 ¢c0'6v €E€98  L9°8¢  9€'19 LEL9 CEVP O0LCOT G98L V6'LE ¢€C'6€ 8C'8E 080 060
aro 970 ¢so €9y 1L°€V G9'€L  C9'69 €9T0T SI'P8 69LG GI'88 <CI'I6 O01°L¢ G¢'8E GL8E 0G0 060
870 0L°0 1670 g8'7%9 0L°Sv 16'88  €EP8  GI'P9 8R9L 6£6L PI8YL 0908 GE€LE ST'0V Tc'6€ 0€0 060
€70 1670 ¥9°0 Ga'8Y ¥G'€€  19¢O0T  ¢L9L LG90T ¢I'89 908G 9L60T 6£6IT LG ¢0'6E 896€ 00 060
97°0 ¥ 0 9¢°0 09°99 T'TE ¢9'cLt  €96L LGP0T G198 T€R9 08€8 ¥PROL 607¢ 09°6e LEOF OT°0 060
€40 89°0 0.0 V6L €6°LL  09°0¢T 8LLL 88L9 G6'CS GV'A8 OR'IPL €G°G¢l 99¢h 9v'Ivy 690V 080 080
6€°0 990 ¥60 cLVy 80°8¢ 6L°09 6068 RGBS TI¥'99 L899 ¥9L0T ¥I9°LL LLLE PI'LE 6L°8E 0S50 080
970 ¥40 ¢90 ¢a'qq ¢G'Sy 8196  G¢'€8 86'ITIT GI'8L L9°0L 886¢T T6F¢l 8I'9E G¢6€ €L 1F 0€0 080
370 69°0 ¢90 8L°TL €6°G7 16'€L  P9°L8 L9'8G TL'GS 8¢'¢8 <c0'CET 91'¢6 67'9¢ 01'9¢ 0¢6€ 020 080
¥v 0 650 ¢s0 16709 96 0¢€ G6°L8 CI'€0T 09’16 ¢c98 LG6L 68TEL 0¢'96 68%¢ L09€ 90°I¥ OT°0 080
86°0 290 ¢L0 6¢°00T ¢€96 8¢'I¢l TL°0L 6¢0L T6°Lv 1886 9€¢Pl PS¥cl 9¥'8¢ 0€°LE 6¢'8E 080 090
640 69°0 0.0 VI'86  66°G0T 61'8cT 8G'LL L0'89 9665 €6'TIT OT'6VI <9IVl G4'6€ G9¥E€ GO0'6E 0G0 050
170 ¥9°0 8L°0 g6V 0€°09 08°06 TT'TIT €€9L WPI6E 6€LL G6CET 9V'LET 09'GE 9¢°€E G€6E 0£'0 090
16°0 o 09°0 8¢'Sv ¢9'1¢ ¢OvL  €1T°00T P& 91T 0€LL LV P01 L6P8 SVPIL I¥'€EE €4°6¢ €L8E 0C'0 090
70 860 [ZA0) 1€°L9 88°6¢ 9799  8RTIT 8EL8 ¢8GYF G0E€0L I¥8IT PLIEL ¥0'CE 008¢ L8LE 010 090
740 ¥9°0 19°0 0686 6€66 TT'€CT 99'€6 8L6L <CI'GL TG0IT 6L IFVL P9STIT I89E CL¥E €ET'LE 080 0€0
760 070 Ggao €9°0L 89°96  8E€'GOT 9866 66FVET GOT¥6 899IT 1868 96'¢IT TI'8E 09°0¢ L¥'LE 0§50 0£0
280 ¢90 6G°0 8¢'86  09°¢OT  €9°¢IT LEL0T 98C6 €E€ET6 EVeVvl 8GTST 9¢9€T LETFE T0°6¢ 6V'9¢ 0€0 0€0
Sl 2,60 640 1819 8G°€8 8L€8  9P'GET GI'€6 068 8G'CIT 69°6ol 61°8CL T1'¢E G9°9c 8€'¢E 020 0€0
a0 1670 6G°0 ¢0°69 €ecL 0929 066V TSEIT 0968 ¥EICT €991 LGLCT 9L°¢CE 0c¥¢ 09°9¢ 010 0€0
TG (M (Mg 00Vg GOAVg @ViAvg GRp Wy i dyg Yy Ay Ay Ayl S . d

SPOURLIBAO)) PUR seouelIRA o[dureg Sursn sojewrr)syy uorsodwosd( Gy d[qe],



"'SMOI ()7 [ 19A0 seSeloar sjuesold oul] Teuy oy, (g i [elIere]N Arejuswe[ddng oos) aaryisod ore Aoy} jer) seejuerensd Julyjou

‘spouRLIRAOD pUR SeoURLIRA o[dures WO (Zy7).pa SUje[noed Uaym ‘Jey) joe] 03 anp (G0 = £ pue g0 = d waym (¥’Iy)uva 10y A1jue Jo eouesqy “(S[reI9p 10J 7'

[ere1RIN A1ejueweddng pue g UOI0AG 99s) Gy 9[qR], WOJ sajewlse uorisodwooep o) 3uisn s, 2y pue s, Zy; Jo seouelieA pal[dWI-[9pow s9jeno[ed d[qR], :S8310N

St 0€0 1€°0 ¥0'T1C ¥6°¢9¢ G6°EVC SV va Sv'18 69°8L Gcv 691T— 99¢ 8EO €90
90°0 8¢0 LT°0 cvLET 267691 86°0ST 89'8 ¥6°S¥ €6°7¢C €6'0— L¢'T v€0 080 060
¢ro  ¥Z0 620 6L eghee  9I'¢le  T0TE  667¢  OFI9 050 SI'T  S9T 0S°0 0670
L¢0 070 0€0 Gr'¢61 TL°9%¢ 8L'6¢C ¢les V¢ 86 86°89 60— €8¢ 98T 0¢0 060
Zr0 S0 €r0  c9s6l  cober  12eeT €6 €L0L  LEOIT 990 GLE PP 020 0670
0¢0 LT°0 17°0 TL°LEC 11°¢¢¢ LT°08¢ 6697 16°8¢ B¢V LLY 19T L¢9 010 060
S0 G€0 080 969FT  POPEZ  98°L8T €19 8E'8L  TILE 80— OTT— 61— 080 080
7€0 €0 220 89881 GLCee ¥8°¢T¢ 69°¢9 80°G. V€84 G9'T ¢90— ©<¢O0T 090 080
Gr0  °€0 680 99TGC  GEeST  €C99T €579 106 €60l 8FC L0 95'G 080 08°0
070 €€0 2€°0 79°061 @891¢ ¥8°6¢cc Gg 9L ¥L0L 8G°C8 0c'¢ 6¢0— I8¢ 0c¢0 080
¢c0 9¢°0 8¢0 ¢0°6¢¢ 91°G0¢ 66°¢0¢ 0¢'14 €V 0Tl GO°€CTT 006  S8T'T 8T'9 010 080
LT°0 ¢e0 da qGevl 6G° 18T Ve 14l Geve 3G 0% ¢cL'ce 86'0 9T'T— KT'0— 080 090
1¢°0 1€°0 €¢0 raall 1¥7°01¢ 00641 veve qLv9 1y or'y 067— 090— 090 090
€v'0 L£°0 €70 L¢V0¢C 11°66¢ 67 79¢ 18°88 89111 GCVIL 609 vec— GLE 060 090
1¢°0 1€°0 6€°0 S6°7ve TSRS G1°¢6¢ 1714 3886 CL'GTT 0’6 88€¢— €9 0¢0 090
PO GE0  6V0 Gr0ST 0GOS PLGTE  PTLIT BR90T BO'GST  L86 FOF— E®G 010 0G0
80°0 ¥¢0 SN0 10°691 G6°LCC G0'661 ¢l 0679 L2°0¢ Iv'¢ 60— ¢&0 080 0¢0
- ¢c0 910 ¥0°'1¢c 30°00¢ 0¢0¢¢ - €¢'99 8¢'9¢ .89 ¢%L— G90— 090 0£0
9¢°0 €€0 .20 9.°¢S¢ 89°00¢ 6&°GLC 86499 97001 69°¢L r'L 9¢'¢— <¢I'c 0€0 0€0
&0 €0 G0 LL'89T  LT'€9E  SP'S6C  TE98  9GFEl  Z9EL  €8°6 95°9— LTE 0T0 0€0
Gge 0 1€°0 0€0 11°ClE GE'E8E VL EVE 66°80T €6°611 €Cv0T 66°¢l 998— €8¢ 010 0€0
Cg e (7w (Toeym (V) (909)ava (#09)wa (Mg)we (Q9)we (H2v)wa Xy Ry Wy 4 4

¢V 91qe], xipuaddy woiy sejewysy Suls() uorsoduwodsd(J 9SION-00UIdeI] 9V 9[qR],



Table A.7: Sensitivity of Results to Experimental Parameters in our Stage 2 Experiments

Panel A. Experimental-Parameter Sensitivity Panel B. Canonical vs. Non-Canonical Parameters
o) @) 3) @ ) ©)
CR CcC MX . Non- .
Study Study Study Canonical Canonical Difference
Probability (p) 23.25 49.57 —28.62 (i): KT Parameters
(6.16) (6.14) (5.89) CRE — RCRE 17.02 9.67 —7.35
(8.36) (13.76) [—1.86]
Common Ratio (r) —35.19 —2.70 —29.88 Experiments 12 108 120

(247)  (252)  (2.30)
(ii): Allais Parameters

Outcome Mean 10.45 —5.77 16.00 CCE — RCCE 7.91 —6.51 —14.41
Experiments 120 120 120 (5.93) (12.96) [—2.73]
Observations 8,408 8,408 8,408 Experiments 6 114 120

Notes: Panel A presents linear regressions that assess the sensitivity of experimental results from CR, CC, or MX studies
from our stage 2 experiments. The specifications include the probability of the high outcome (p), the common ratio (r)
linearly, and a constant. Column (1) presents the results for the 120 CR experiments that we conducted in stage 2 of our
experiment, where the outcome is the net share of participants displaying a CRE relative to an RCRE, CRE — RCRE.
Column (2) presents the results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the
outcome is the net share of participants displaying a CCE relative to an RCCE, CCE — RCCE. Column (3) presents the
results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the outcome is the net share
of participants displaying a MXE relative to an RMXE, MXFE — RMXE. Standard errors are in parentheses. Panel
B presents the average of these outcomes based on whether our stage 2 experiments were conducted at the canonical
parameters in Kahneman and Tversky (1979) (p = 0.8, r € {0.2,0.3}) or Allais (1953) (p = 0.9, r = 0.1). Standard
deviations are in parentheses, and t-statistics are in brackets.



Figure A.1: Histogram of Response Patterns for r € {0.1,0.2,0.3} and p € {0.8,0.9}
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Notes: Figure presents histogram of (sign(Acr), sign(Acc), sign(Aax)) combinations, where Acr = hap — hep,
Acc = hap — hpg, and Ay x = hyp — hyp,. Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to Acr > 0, RCR to Acr < 0, and OCR to
Acr = 0). The histogram covers the 1,296 observations from the parameters r € {0.1,0.2,0.3} and p € {0.8,0.9} for
which we elicit h/yp and h',5,. Patterns marked in light green are ones with Acg > 0 and Acc > 0.



Figure A.2: Histogram of Response Patterns for r ¢ {0.1,0.2,0.3} or p ¢ {0.8,0.9}
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Notes: Figure presents histogram of (sign(Acr), sign(Acc), sign(Aax)) combinations, where Acr = hap — hep,
Acc = hap — hpg, and Ay x = hyp — hyp,. Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to Acr > 0, RCR to Acr < 0, and OCR to
Acr = 0). The histogram covers the 2,908 observations from the parameters r ¢ {0.1,0.2,0.3} or p ¢ {0.8,0.9} for
which we elicit h'yp and h',5,. Patterns marked in light green are ones with Acg > 0 and Acc > 0.
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Figure A.3: Histogram of Response Patterns for r € {0.1,0.2,0.3} and p € {0.3,0.5}
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Notes: Figure presents histogram of (sign(Acr), sign(Acc), sign(Aax)) combinations, where Acr = hap — hep,
Acc = hap — hpg, and Ay x = hyp — hyp,. Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to Acr > 0, RCR to Acr < 0, and OCR to
Acr = 0). The histogram covers the 2,508 observations from the parameters r € {0.1,0.2,0.3} or p € {0.3,0.5} for
which we elicit h'yp and h',5,. Patterns marked in light green are ones with Acg > 0 and Acc > 0.
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Figure A.4: Predicting Stage 2 Choice Probabilities using Stage 1 Valuations
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Notes: Figure relates individual stage 1 measures of hxy —H to stage 2 choice shares Pr(X|{X,Y}). Panels A-C use raw
stage 1 responses. Panels D-F use the estimated population distribution of preferences from the decomposition in Section
4.2 combined with a participant’s raw stage 1 valuations to generate a posterior preference measure E[h% |stage 1] for
that participant. For each z-axis, one hundred equally sized bins are constructed with approximately 168 observations
per bin. Within each bin, the stage 2 choice share is calculated to construct the y-axis. Due to a large number of
observations at some values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make valuations
comparable across (p,r), all stage 1 measures are scaled by p to control for the fact that a fixed value of the measure
is predicted to yield a larger stage 2 effect the larger is p (see Supplementary Material D.3 for details).

12



Figure A.5: Structural Estimates and Model Fit

Panel A: Upside Potential Estimates — Flexible Five Parameter Model
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Notes: This figure presents the estimated parameter functions and model fit for our model of upside potential with a
flexible (Panel A) and a parametric (Panel B) functional form, along with the best-fitting CPT model with a flexible
form (Panel C). The left panels depict the estimated functions, k or w. The middle panels depict the in-sample fit for
our three valuations, hap, hap’, and hcp. The right panels depict the in-sample fit for our three preference measures,

ACR, Acc, and AM)(.
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B Upside-Potential Model: Predictions

B.1 Predictions for the Upside-Potential Model

In this section, we provide a Proof of Proposition 1 and derive the additional model predictions
discussed in Section 5.2 of the main text. For completeness, we replicate the model assumptions
here. Given a lottery (H,qm; M,qn;0,1 — qg — qur), a person evaluates the lottery using decision

utility function:

U =lauH + quM] + (au + qum) [aur(H) + que(M)] (B.1)

where k() is strictly increasing in x. For binary lotteries with ¢ps = 0, this formulation reduces to

U =quH + ¢}r(H),

and for certain payments with qy; = 1, it reduces to
U=M + r(M).

It is worth highlighting that this model respects first order stochastic dominance on its domain,
(H,qm; M,qn;0,1 — g — qur). Consider two lotteries f = (H,qmg; M, qn;0,1 — qg — qpr) and
g=(H ¢y; M, q¢,;0,1—q} —q),) and suppose f first order stochastically dominates (fosd) g. One
implication of f fosd g is that g +qu = ¢y, + ¢jy; otherwise f would have higher probability of zero.
Standard results from EU with a monotonic utility function imply [ggH + g M| = (¢ H' + ¢);M']
which in turn implies [¢gx(H) + qur(M)] = [¢yr(H') + ¢ x(M')] for increasing £(-). Combining

these two properties with gar + g = ¢4, + ¢}y implies
larr H + aue M)+ (qu+anr) lars(H) + qus(M)] = [qH' + gy M1+ (ai+dig) [das(H') + dyn(M)]

and hence U(f) = U(g).

Applying this model to the context of our experiment, the triplet (h% g, h¥ g/, hip) solves

M+ k(M) = phlip+p°a(hip) (B.2)
M+ k(M) = prhig + 1 —r)M+ (pr+1—7)[pre(hlg) + (1 —r)s(M)] (B.3)
rM +72k(M) = prhkp + (pr)?k(hEp). (B.4)
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We then characterize behavior in this model in Proposition 1:

Proposition Al. Suppose that (k% 5, h% g, hip) is derived from equations (B.2), (B.3), and (B.4).

For any (p,r) € (0,1)% and k(z) that is strictly increasing in X:

(1) A person’s Alp, Abq, and A}, satisfy:

(a) ALp > 0if and only if k(M) > p
A% p <0 if and only if k(M) < p?k(h¥z) < p’k(hEp); and
Afp = 0if and only if k(M) = p

(b) A%p > 0if and only if k(M) >
Afe < 0if and only if k(M) < (%) k(h% ) < (%) k(hEp); and
At = 0if and only if k(M) = (2%;) k(M g) = (2%) k(hEp).

(c) A%,y > 0if and only if k(M) <
A%, <0 if and only if k(M) >

(2) Afp < 0 implies A%, < 0 and A}, > 0, and Af, < 0 implies A}, > 0. (Equivalently,

A%,y <0 implies Afp > 0 and Af, > 0, and Al = 0 implies A%, > 0.)

(3) The person must exhibit one of the following seven patterns of behavior:
Pl: 0> Afp > A} and A}y >0 (RCRP-RCCP-MXP)
P12: 0=A%, > Ak and A%,y >0 (QCRP—RCCP—MXP)
P2 A%, >0> A%, and A%, >0 (CRP—RCCP—MXP)
P23: Abp > Afs=0and A}y >0 (CRP—QCCP-MXP)

(
(
(

P3:  Aip> AL, >0and A% >0 (CRP—CCP—MXP)
CRP—CCP— QMXP)

CRP—CCP—RMXP).

P34: Ak, = Ao >0and A%, =0

P4: Abe > Abp >0and A <0

Proof:
(1a) Recall that Afp = b 5 —hip, where b 5 and ., are derived from equations (B.2) and (B.4).

We can rewrite equation (B.4) as

M + k(M) = pht:p + p*k(hEp) + (1 =) (k(M) = p*(hEp)) |
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and combining this equation with equation (B.2) yields

phiip + p°R(Rip) = phip + PP r(hEp) + (1 — 1) (k(M) — p*k(hED)) -

Proof of CD condition: Because ph + p*x(h) is strictly increasing in h, this equation implies h% 5 >
hEp if and only if k(M) > p?k(hE ), hYg < hip if and only if k(M) < p?k(h¥ ), and h¥ 5 = hEp

if and only if k(M) = p?k(h¥p).

Proof of AB condition: Define f(h) = ph + p*s(h) + (1 — r)(k(M) — p*k(h)), so hEp is defined by
f(hEp) = M + k(M). Because f is strictly increasing in h, h%z > h{p if and only if f(h%g) >
M + k(M), which based on equation (B.2) holds if and only if x(M) > p?k(h% ). Analogously,
hi g < hip if and only if f(h¥z) < M + k(M) or k(M) < p?k(hYg), and bz = h¥, if and only if
F(h) = M + k(M) o1 k(M) = pr(h% ).

Finally, note that when A%, > 0 and thus h¥ 5 > hp, & strictly increasing implies pc(h% ) >
p*r(hEp). Analogously, A% < 0 implies p?r(hY5) < p?r(hép), and A%, = 0 implies p?k(hY g) =

p*(hEp). The result follows.

(1b) Recall that A¥~ = h¥p — hEp, where b5 and hf, are derived from equations (B.3) and

(B.4). We can rewrite equation (B.3) as
FM 4+ 2(M) = pricig + ()P g) + (1 ) (ps(W ) — (2 — (M),
and combining this equation with equation (B.4) yields

prigp + (pr)*k(hép) = privap + (pr)*s(hap) + (1= r)r (pr(hip) — (2 = p)s(M)).

Proof of AB’ condition: Because prh + (pr)%x(h) is strictly increasing in h, this equation implies
h¥ g > h¢p if and only if k(M) > (2%9) k(Wi ), Wi g < hép if and only if k(M) < (ﬁ) r(hg),
and h¥ 5 = hp if and only if k(M) = <ﬁ) k(h ).

Proof of CD condition: Define f(h) = prh + (pr)?s(h) + (1 — r)r (pr(h) — (2 — p)r(M)), so h¥z
is defined by f(h¥% ) = rM + r?s(M). Because f is strictly increasing in h, h¥ 5 > h% if and
only if f(h¥p) < rM + r?s(M), which holds if and only if k(M) > (2%7) k(h¢p). Analogously,
R < hép if and only if f(hEp) > rM + r?s(M) or k(M) < (2%) k(hEp), and b5 = hEp if
and only if f(hE ) = rM + r?k(M) or k(M) = (ﬁ) k(hEp)-
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Finally, note that when A%~ > 0 and thus h% 5 > h{p, & strictly increasing implies < p) k(W) >

<2L k(h&p). Analogously, A% < 0implies (2pp) k(W) < <ﬁ> k(h&p), and Ak = 0 implies
<2L> rk(hhp) = (ﬁ) K(hép)-
(1c) Recall that A%,y = h¥z — h¥ g, where h¥ and h%p are derived from equations (B.2) and

(B.3). We can rewrite equation (B.3) as
M + k(M) = phiyg + p*s(Rp) + (L= 7)(1 = p) (pr(hip) — K(M)),
and combining this equation with equation (B.2) yields

phiip + p*r(hip) = phlip + PPr(Rip) + (1 —1)(1 — p) (pr(hip) — K(M)).

Proof of AB’ condition: Because ph + p?r(h) is strictly increasing in h, this equation implies h¥ 5 >
h% g if and only if k(M) < pr(hY5/), Mg < b if and only if k(M) > pr(h¥ ), and hY 5 = b 5

if and only if k(M) = pr(h¥g5/).

Proof of AB condition: Define f(h) = ph + p*k(h) + (1 — r)(1 — p)(pr(h) — K(M)), so k% is
defined by f(h% ) = M + k(M). Because f is strictly increasing in h, h¥ 5 > h% 5 if and only if
f(hip) > M + x(M), which holds if and only if k(M) < pr(h’z). Analogously, hip < h¥ 5 if and
only if f(h¥z) < M +k(M) or k(M) > pr(h¥g), and bz = h¥ g if and only if f(hYz) = M + k(M)

or w(M) = pr(h’p).

Finally, note that when A%,y > 0 and thus h%z > h¥p/, K strictly increasing implies pr(h¥5) <
pr(h¥ ). Analogously, A%,y < 0 implies pr(h¥ 5) > pr(hYp), and A}, = 0 implies pr(hYz) =
pr(hY ). The result follows.

. . 2 2
(2) From la, Ak < 0 if and only if k(M) < p*k(h%p) < p?k(hEp). Because p? < 72, for any
€ (0,1), it follows that k(M) < 32 k(h{p), and thus from 1b it follows that Af,. < 0. Similarly,
because p? < p for any p € (0,1), it follows that k(M) < pr(h¥%g), and thus from 1c it follows that

Alyx > 0.

From 1b, Af. < 0 if and only if p k(h* ). Because % < p for any p € (0,1), it follows that
k(M) < pr(h% ), and thus from 1c it follows that A}, > 0. The result follows (and note that the

“equivalently” sentence follows directly from the initial sentence).
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(3) First, recall that A}, y = Afp—Af e, and thus A}, > 0 implies A%, > Af o, Al x = 0 implies
Abp = Afq, and Aj;x < 0 implies Afp < Af. The result follows directly from this observation
combined with part 2. Specifically, when A%, < 0, we must have Af <0 and A}, > 0, and thus
Abp > Afq, yielding patterns P1 and P12. When Af, > 0 but Af. < 0, we must have A}, >0
and thus Afp > Af -, yielding patterns P2 and P23. When A%, > 0 and Af» > 0 but A}, =0,
we must have A% p > Af, yielding patterns P3 and P34. Finally, When A%, > 0, Af > 0, and
Alyx <0, we must have Af.p, < Af, yielding pattern P4. This completes all possibilities consistent

with part 2.

In the main text, we discuss the importance of the special case of our model where the function
K is linear (i.e., k(z) = ¢x for some ¢ > 0). This case highlights that MXP emerges in our model

due to the way that probabilities enter, and not because the function x has some special structure.

Proposition A2. Suppose that (k% g, h% 5, hip) is derived from equations (B.2), (B.3), and (B.4),

and further suppose that x(z) = ¢z for some ¢ > 0. For any (p,r) € (0,1)?, we must have:
(1) Afg > 0;
(2) A%;x > 0; and

(3) A& could be positive, negative, or zero.

Proof: When r(z) = ¢z, equation (B.2) becomes

1+¢ M

M + ¢M = phiyp + p*ohlip = hZleerd)p

equation (B.3) becomes

M+ ¢M = prijyp + (1 —r)M + (pr + 1 —7) [prohiyp + (1 —r)pM]

1+ (2—p—r+pr)¢ M
1+(1—=r+pr)p p’

— Rig =
and equation (B.4) becomes

1+r¢p M

M + r2pM = prhk, + (pr)?ohé — hi, = ——— .
T ¢ prh¢p + (pr)°ohep CD = T3 prg p
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We have Afp > 0 if and only if h% 5 > h{, which holds if and only if

1+¢ 1+7ro
14+pp 1+pro

= (1+@)(1+pro) > (1+7r¢)(1 + pg)

= l+o+protpre’ >1+ro+po+pré’ = ¢(l-r)(1-p)>0.
Since this inequality holds for any (p,r) € (0,1)%, A% > 0 for any (p,r) € (0,1)2.
Next, we have A}, > 0 if and only if h% 5 > h? 5/, which holds if and only if

1+¢ - 1+2—p—r+pr)o
1+ po 1+(1—=r+pr)e

= (1+¢)(A+ (A =r+pr)¢) > (1+2—p—r+pr)o)(1+po)

= 1+ 2-r+p)o+{1—r+pr)¢*>1+2—r+pr)¢+ (2p—p*>—pr+p’r)e’

— l—r—2p42pr+p>—p?r>0 — (1-7)(1-p)*>0.

Since this inequality holds for any (p,r) € (0,1)2, it follows that A%,y > 0 for any (p,r) € (0,1)2.

Finally, it is straightforward to construct examples where A%~ is positive, zero, or negative.

According to Proposition A2, our model with a linear s function predicts behavior must take on
one of patterns P2, P23, or P3. While a linear x function can generate our model pattern P2, we
describe in Section 5.1 how a linear k cannot explain all instances of pattern P2. We provide the

details in the following example.

Example: Explaining Mean Valuations when (p = 0.5, = 0.2) with a x Function

In our stage 1 data, when p = 0.5 and r = 0.2, the mean responses are hap = 38, hap = 29

and hop = 33. Hence, part 1 of Proposition 1 implies that x must satisfy:
1 1 1
5%(29) > g/ﬁ:(29) > k(15) > 15(38).

We show here that one can combine the second and third inequalities to derive that:

k(29) — k(15) - k(15) — k(0) and k(29) — k(15) - k(38) — k(29)
14 15 14 9 '
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The second inequality implies x£(29) > 3k(15), from which it is straightforward to derive

k(29) — k(15) - k(29) — k(15) - 2/@(15) — k(0) - k(15) — k(0)
14 15 15 15 ’

The third inequality implies (38) < 4x(15), which when combined with x(29) > 3x(15) from
the middle inequality yields x(38) — x(29) < k(15) — (0). From this, we can derive

k(38) — k(29)  k(15) — k(0) _ 2%(15) — k(0) _ k(29) — /@(15)‘

9 = 9 15 14

In Section 5.2.1, we describe the relationship predicted by our model between whether a person
exhibits a CRP and their risk aversion in their AB valuation—where a person is risk-averse in the
AB valuation when h%; > M /p, and risk-loving when h%; < M /p. That exploration is based on

the following proposition:

Proposition A3. Suppose that (h% g, h¥ g/, hi:p) is derived from equations (B.2), (B.3), and (B.4).

For any (p,r) € (0,1)? and k() that is strictly increasing in z:

(1) A person’s h¥ p satisfies:
(a) h%p > M/p if and only if k(M) > p?k(h¥5);
(b) h¥ g < M/p if and only if k(M) < p*k(h%z); and
(c) h¥g = M/p if and only if k(M) = p*k(h¥z).
(2) The relationship between a person’s h% 5 and A¥, satisfies:
(a) k¥ > M/p if and only if Af, > 0;
(b) h%p < M/pif and only if A}, < 0; and

(c) b = M/pif and only if A}, = 0.

Proof: (1) From equation (B.2), h% ; is derived from

M + k(M) = ph¥p + p*r(h ).

Applying this equation, k(M) > p?k(h% g) if and only if M < ph*z or kg > M /p; k(M) < p*k(h%z)
if and only if M > ph% g or h%z < M/p; and k(M) = p*k(h%y) if and only if M = ph¥ or
h¥ g = M/p. (2) Follows directly from part 1 combined with Proposition Al part la.
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Finally, in Section 6, we discuss the implications of our model for event splits—that is, how people
feel when choosing between a lottery (H,p) versus a lottery (H + z,p/2; H — z,p/2). Note that the
second lottery is obtained from the first by splitting the “event” of a probability p of winning H into
two “events”, each with probability p/2, that maintain the expected value of the lottery. Several
recent papers have found evidence that people dislike such splits, and one might wonder whether
such evidence is inconsistent with our finding of mixture-loving preferences.

In our model, a person’s preferences for or against event splitting can be determined separately
from their preferences for or against mixtures. In particular, Proposition A2 demonstrated that an
MXP emerges in our model due to the way that probabilities enter our model. In contrast, the
following proposition establishes that preferences for or against event splitting depend on the local

curvature of the function .

Proposition A4. Suppose a person is presented with a choice between lottery (H,p) and lottery

(H + z,p/2; H — z,p/2), and the person chooses based on the decision utility in equation (B.1). For

any (p,7) € (0,1)%
(1) If  is linear on domain [H — 2z, H + z|, then (H,p) ~ (H + 2,p/2; H — z,p/2);
(2) If k is concave on domain [H — z, H + z|, then (H,p) > (H + z,p/2; H — z,p/2); and

(3) If k is convex on domain [H — z, H + z], then (H,p) < (H + z,p/2; H — z,p/2).

Proof: Applying equation (B.1), the decision-utility comparison is

pH + p*k(H) : g(H—i-z)+g(H—z)+p[§m(H+z)+gn(H—z)]
pH + p* [k(H)] : pH + p* |:;I€(H + z) + %H(H - z)}
k(H) : %H(H +z) + %K(H — 2).

The result follows directly.
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B.2 Distinguishing Upside Potential from Probability Weighting

In Supplementary Material F, we show that our model of upside potential provides a substantially
better quantitative fit of our aggregate data than either CPT or OPT even when permitting flexible
functional forms for probability weighting. In this section, we consider what properties of our model
are fundamentally distinct from formulations of probability weighting which permit this improved
fit.!

We focus on the different ways that probabilities enter into the models. Hence, throughout this
section, we assume a linear x function for our model (i.e., K(z) = ¢z) and a linear value function for
CPT or OPT (i.e., v(2) = 2).2

We first assess whether either OPT or CPT with a flexible functional form for 7 could replicate
the predictions from our upside-potential model. Under OPT with a linear value function, the

indifference values (h% g, h¥ g/, hip) are determined from:

M = w(p)hig
M= wpr)hy g+ 7= )M
m(r)M = =w(pr)hip

Under CPT with a linear value function, the indifference values are determined from:

M = =(p)hip
m(pr)hip + [r(pr +1—1) —w(pr)]M

=
I

m(r)M m(pr)hép

As discussed above, OPT and CPT coincide for binary lotteries, but not for the trinary lottery B’.
When k(z) = ¢z, under our upside-potential model, rearranging the conditions from the proof of

Proposition A.2, the indifference values are determined from

_ p+p*,,
_oprt(pr+l=r)(pr)d, . (I=-r)+r+1-r)1-1)¢
M = o WY g + o M (B.6)
r+r?e. o opr+ (),
T3 M = Ty o (B.7)

1'We emphasize that a comparison of prospect theory to our model on our data is apt in the sense that the probability
weighting function in prospect theory was developed specifically to speak to anomalies in CR and CC problems.
2For CPT or OPT, adding a slope parameter to the value function would not change predictions.
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If we were making predictions for decisions that involve only sure amounts or binary lotteries
with one winning outcome, then either OPT or CPT with probability weighting function m(g) =
(¢ + ¢*¢)/(1 + ¢) will generate the same predictions as our upside-potential model. This general
point is reflected in the equations above by the fact that the A% 5 and hf, conditions would be the
same in all three models. Hence, for decisions that involve only sure amounts or binary lotteries with
one winning outcome, our upside-potential model is a special case of either OPT or CPT, and thus
if we had data on only such decisions, our model could not outperform OPT or CPT.

It is for decisions that involve trinary lotteries with two winning outcomes that neither OPT nor
CPT can replicate the predictions of our model. To see this under OPT, note that it would need to
be the case that the weight on h% 5 in equation (B.6) can be expressed purely as a function of pr,
the weight on M in equation (B.6) can be expressed purely as a function of (1 — r), and those two
functions would need to be the same. Neither of the first two conditions holds, and thus clearly the
third does not as well.

To see this under CPT, note that we can rewrite the CPT condition for h% 5 as

M =n(pr)[hyg — M]+n(pr+1—r)M

and the upside-potential condition for h% 5, as

(pr+1—7)+(pr+1-r)3¢
1+¢

_prt(pr+1-r)(pr)d

M
1+¢

M.

[Wap — M] +

Here, we can match the weight on M if we use 7(q) = (¢+¢*¢)/(1+¢), but there is no way to express
the weight on (h% 5 — M) purely as a function of pr. For decisions that involve trinary lotteries,
our upside-potential model is therefore distinct from OPT and CPT even when we assume a linear
k function.

This analysis highlights a key difference between our model and OPT or CPT. For trinary lotteries,
both CPT and OPT require that the weight applied to each outcome depend only on that outcome’s
probability (or cumulative probability in the case of CPT). For lottery B’ this means the weight on
the highest outcome A% 5, must be a function solely of that outcome’s probability, in this case pr. In
contrast, under the upside-potential model, the weight applied to outcome h% 5, is a function both of
pr and the total probability of winning, in this case pr + 1 — r. This fundamental distinction derives
from the central psychology of the upside potential model: that winning probabilities can matter

more the greater is the total chance of winning.
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We can obtain further insights on the differences between the models by comparing the qualitative
predictions for our experimental tasks of the upside-potential model to the those of OPT or CPT
when we assume probability weighting function 7(q) = (q + ¢?¢)/(1 + ¢).

Proposition A2 establishes that for linear x, the upside potential model predicts both CRP and
MXP, with no prediction for the CC preference. As described above, with probability weighting
function 7(q) = (¢ + ¢*¢)/(1 + ¢), OPT and CPT both replicate the predictions of the upside-
potential model for the AB and CD tasks and thus both predict a CRP. Proposition A5 below
establishes that OPT and CPT with this weighting function both further predict a CCP and an
RMXP. In other words, the two models would disagree on the MX preference, and might disagree on
the CC preference.

Proposition A5. Suppose that (h¥ g, h¥ 5/, hip) is derived from OPT or CPT with a linear value

function and probability weighting function 7(q) = qfﬁ?‘ For any (p,r) € (0,1)2, we must have:

(1) Ay >0
(2) Ao > 0; and

(3) Ajx <0.

Proof: First note that part (1) follows from part (1) of Proposition A2 combined with the logic

in the text that, when using 7 (q) = qff?f, both OPT and CPT replicate the predictions from the
upside-potential model for the AB task and the C'D task.

Next, note that under both OPT and CPT, the condition for h¥%; is M = ffz)‘z’ h% g, and thus

for any r € (0,1),

2 2 _ _ 2
Mo <p1++p¢¢> BE ot (1—r) (M) = <p7“1++p¢7“¢> (h*AB—M)+((1 r +p7“)1++(; r+p 7")<Z>> v

Consider the condition for h* 5, under OPT. Define f(h) = prﬁ(f;)%h+ (1_T)f£b)_r)2¢M, so under

OPT, h¥p is defined by M = f(h%y). Because for any r € (0,1), r (m) > 2o ang

1+ I+6
1-7) > (I*T)Ir(;ﬂ’)%
+

h% g > h%p and thus A%}, < 0. Finally, the combination of A}, > 0 and A},y < 0 implies

Abe > 0.

, we must have M > f(h% ). Since f is increasing in h, it follows that

Now consider the condition for h% 5 under CPT. Define

_ (pr+ (pr)*o (I—r+pr)+Q—r+pr)e
o = () oo+ ( I+ )
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so under CPT, h , is defined by M = g(h% /). Because for any r € (0,1), (pr+p2m> > e’ g

1+¢ 1+¢
(1—r+pr)+(1—r+p*r)e > (1—r+pr)+(1—r+pr)?¢
1+¢ 1+¢

), we must have M > g(h% ). Since g is increasing
in h, it follows that h% 5 > hjp and thus A}y < 0. Finally, the combination of Af,, > 0 and

A% x < 0 implies Af, > 0.

Although it is not relevant for our analysis in this paper, we highlight one further distinction
between our upside-potential model and CPT. Under CPT, the weights attached to outcomes depend
on their relative ranks, whereas under our upside-potential model, they do not. To illustrate, consider
a trinary lottery (x1, q1;x2,¢g2). Under CPT, if 21 > x9 > 0, this lottery is evaluated using 7(q1)z1 +
[7T(q1 + q2) — 7(q1)]xa, whereas if zo > 1 > 0, it is evaluated using 7(q2)x2 + [7(q1 + ¢2) — 7(g2)]z1.
Under our model with a linear s function, for any x; > 0 and x5 > 0, it is evaluated using [1 + (q1 +
@2)0lqix1 + [1 + (1 + g2)¢]gex2. The weights that are applied to outcomes x; and z2 under upside
potential are symmetric—depending only on each outcome’s probability and the total probability of
winning—regardless of whether 1 > x5 or 9 > z1. This symmetry may be a valuable feature of the
upside potential model given recent evidence of rank-independence in choice (Bernheim and Sprenger

(2020); Bernheim et al. (2022)).
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