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C Predictions of Existing Non-EU Models (for Table 1)

In this appendix, we derive the predictions presented in Table 1. To review the structure, given

parameters (M,p,r), h¥g, h¥pg, and hip

indifference conditions:

(le) ~

(M71) ~

(M,T’) ~

The objects of interest are then:

*
AC’R

*
AC’C’

*
AMX

are the indifference values that satisfy the following

(Pap, D)

(hWyg,pri M, 1 —r)

(hz“:pmr)

= hip —hép
=hip —hép
=hhp—hap

C.1 Original Prospect Theory (OPT)

Under original prospect theory (OPT) as in Kahneman and Tversky (1979), the indifference values

are determined from:

o(M) = mp)u(hiy) — Wy =0 <7T(1P)U(M)>
o(M) = w(prv(hig) + 71 —r)o(M) < hig =v" (me)
w1 = wro(hsp) iy = (2o
Hence: . )
Abp>0 = hig>ht, <« @>:(£T)

At >0 = hWyp >hip <= 1—-n(1-r)>n(r)
—

* * *



In this formulation, v(z) is a value function defined over experimental gains and losses, but note
that as long as v is monotonically increasing, its form is irrelevant to OPT’s predictions for the
sign of Afp, Ak, and A%, x. In contrast, m(q) is a probability weighting function that transforms
probabilities into decision weights, and its form fully determines those predictions. Here, we derive

predictions using the functional form from Tversky and Kahneman (1992):

q(S

[¢° + (1 —q)°]"°

m(q) =

This one-parameter functional form nests the EU case of 7(q) = ¢ when 6 = 1. For § € (0.279,1),
it has the inverse-S shape emphasized by Tversky and Kahneman (1992) and the subsequent liter-
ature: It is initially concave and then convex, with overweighting (7(q) > ¢) for small ¢ and then
underweighting (7(q) < ¢) for larger ¢.> Tversky and Kahneman (1992) suggest a ¢ of roughly 0.6.
For ¢ > 1, this functional form initially yields an S-shape—initially convex and then concave with
underweighting for small ¢ and then overweighting for larger ¢g—but eventually becomes convex with

underweighting for all ¢ € (0, 1).

OPT Result:

(1) 6 € (0.279,1) implies A% > 0 and A}, > 0; A}, can be positive or negative

depending on (p,r) combination.

(2) 0 > 1 implies A}p <0, A >0, and A}, < 0.

Proof: Consider first the Afp results. Rearranging the condition above yields

Abp: 0 = () :7(p)

which we can write as

(pr)° (1) + (1 =) (p)°
[(pr)® + (1 — pr)®]"° (r)° )+ (1 —p)]

Canceling terms and then taking both sides to the power ¢ yields

(r)?+1-r)° 1
(pr)° + (L —pr)? " (p)° + (1 —p)?

[(0)° + (1 =p)[(r)° + (L =) (pr)° + (1 —pr)°
3For § € (0,0.279), 7(q) is nonmonotonic (Ingersoll, 2008).




(pr)° + (p(1 =)’ + (r(1=p))’ + (1 =p) (1 = 7)) : (pr)° + (1 —pr)°
(p(1 =)+ (r(1=p))° + (1 =p) (1 =) : (1 =pr)°
Note that we can rewrite this as
A+ 40

where a = p(1—71),b=7r(1—-p),c=(1—p)(1 —7r), and d = 1 — pr, and note that a + b + ¢ = d.

% is concave when § < 1, it follows that a + b + ¢ = d implies

Then because the function f(z) = z
f(a)+ f(b)+ f(c) > f(d), and thus 0 < 1 implies A%, > 0. Analogously, f(z) is convex when § > 1,

so a+ b+ c = d implies f(a) + f(b) + f(c) < f(d), and thus § > 1 implies A%, < 0.

Next consider the Af results. Rearranging the condition above yields
Abe:0 = 1l:7(r)+7n(1-r)

which we can write as
(r)° (1—r)°

RS G TS S FE E R

1-1/s

L[+ (=)

When § < 1: r < 1 and 6 < 1 implies r® > r and (1 —7)® > 1 — 7 and thus (r)° + (1 — )% > 1. In
addition, § < 1 implies 1 —1/6 < 0, and thus [(r)° + (1 — 7“)5]1_1/6 < 1 and therefore A% > 0.
When § > 1: r < 1 and § > 1 implies r® < r and (1 —7)® < 1 — 7 and thus () + (1 — )% < 1. In
addition, 6 > 1 implies 1—1/8 > 0, and thus [(r)° + (1 — 7‘)‘5]1_1/6 < 1 and therefore again A%, > 0.

Finally, when 6 > 1, the combination of A%, < 0 and A%, > 0 implies A}, = Afp — Afs < 0.

In contrast, for 6 < 1, it is possible for A%,y to be positive or negative.

C.2 Cumulative Prospect Theory (CPT)

Cumulative prospect theory (CPT) as in Tversky and Kahneman (1992) differs from OPT only for
gambles with more than one non-zero outcome. In our context, this means they differ only in the
evaluation of lottery B’. Hence, the h¥, and h{j, indifference values are as in OPT, but the h% g,

indifference value is now determined from:



e (Lt 1) ()
= ) an)

Hence, we now have:

1 m(r)

A¥%,.>0 < h*,>h? —_ — > —

o AB = ToD m(p) ~ w(pr)
At >0 — hig >hip, < 1—(n(lpr+1—r)—mn(pr)) >mn(r)
1 - 1—(n(pr+1—r)—mx(pr))

m(p) m(pr)

AYyx >0 <= hjp>hip <

As in OPT, the value function v is irrelevant for the model’s predictions for the sign of Afn, Afq,
and A%, y, which are fully determined by the form of the probability weighting function 7. Here, we
again derive predictions using the functional form from Tversky and Kahneman (1992).

CPT Result:

(1) 0 € (0.279,1) implies A%, > 0 and A}~ > 0; A}, ¢ can be positive or negative.

(2) 0 > 1 implies A% < 0; A%~ and A%,y can be positive or negative.
Proof: The Af, equations are the same as in OPT, and thus the proof from the OPT Result still

holds. So we just need to prove that ¢ € (0.279,1) implies A%~ > 0.

We begin with two preliminary results. First, note that for all § > 0.279,

5 o-25t _
m(1/2) = L)lé = <1> < 1 because § — o-1 > 1.
[2(1/2)0] / 2 2 0
Second, we prove that
m(l—a)—m(1=0) > m(b) —7n(a) forany 0 <a<b<1/2 (C.1)

In words, equation (C.1) says that m(q) is steeper for ¢ above 1/2 than for g below 1/2. To prove

this, we rewrite the inequality in equation (C.1) as 7(a) + 7(1 — a) > 7(b) + w(1 — b), which yields

(@ +@-a® _ (O +1-b"
[(a)® + (1 — a)(s](l/é) [(b)° + (1 — b)g](l/é)




1—(1/6) 1-(1/9)
(@) + (1 - a)’] > [0+ (1 -0y
Then because

d[(x)® + (1 —)7]' "

- St = (1—2)° )

= (- /)@ + -2

is negative as long as § < 1 and = < 1/2, equation (C.1) follows.

We now prove that ¢ € (0.279,1) implies A%~ > 0. The A condition can be written as

1 1-—
Ak >0 + ;r(pr) - m(pr + 2r) +7(r)

Let’s define z such that min{r, pr+1—r} = pr+z, and note that this implies that max{r,pr+1—r} =
1—2z (so that (r)+ (pr+1—7r) = (pr+2)+ (1 —2) = 1+pr). We can then rewrite the A}, condition

as
1+ w(pr) - w(pr+z)+7(l—z)
2 2

A >0 =

The LHS is the y-value for the midpoint of the line segment that connects the points (pr, 7 (pr)) and
(1,1), while the RHS is the y-value for the midpoint of the line segment that connects the points
(pr+z,m(pr+z)) and (1 —z,7(1—2)), where the x-value for both midpoints is (1 + pr)/2. Given the
inverse-S shape of m(q) for § € (0.279,1) and the fact that 7(1/2) < 1/2, the LHS line segment can
intersect 7(q) for at most one g € (pr,1). Moreover, if such a g exists, then pr < g < 1/2, w(pr) > pr

and 7(q) > q.

If such a q does not exist, then the LHS line segment must be everywhere above the RHS line segment,

and thus the Af condition holds.

If such a ¢ exists but pr + z > ¢, then again the LHS line segment must be everywhere above the

RHS line segment, and thus the Af, condition holds.

Finally, suppose such a ¢ exists but pr + z < ¢ < 1/2. If 7 is concave at ¢ and thus concave for
all ¢ < @, then w(pr + 2z) — w(pr) < 7(z) < 1 —7(1 — z) (where the first inequality follows from
the concavity of 7 for ¢ < ¢ and the second inequality follows from equation (C.1) with a = 0 and

= z < 1/2), and thus the A¥ condition holds. Suppose instead 7 is convex at g and thus convex
for all ¢ > g. Because pr+ z < ¢ < 1/2 and thus 1 — pr — z > 1/2, we have 7(pr + z) — 7(pr) <
m(l—pr)—n(1—pr—2z) <1—mx(1—z) (where the first inequality follows from equation (C.1) and

the second inequality follows from the fact that 7 is convex for all ¢ > ¢). Hence, again the A¥



condition holds.
This covers all cases, and hence § € (0.279,1) implies A% > 0.

Finally, we note that a symmetric argument does not work for § > 1 because equation (C.1) does
not flip to maintain the symmetry. More precisely, if pr + z > ¢, an analogous argument implies that
to < 0. But when pr+2z < @, equation (C.1) still implies w(pr+z)—n(pr) < n(1—pr)—n(1—pr—=z),

and this creates the possibility that Af, > 0—in fact, it is easy to generate such examples.

C.3 Koszegi-Rabin Loss Aversion Under CPE

We next consider predictions from the Készegi-Rabin (2007) model of loss aversion when we ap-
ply choice-acclimating personal equilibrium (CPE). Under CPE, the utility from a lottery X =

(x,qm;0,qr) where x > 0 and g + g, = 1 is

U(X) = qgu(z) — Aqurqru(z)

and the utility from a lottery Y = (z, qm; v, qar; 0, ) where z >y > 0 and g + qpr + g = 1 is

U(Y) = qgu(z) + quu(y) — Aqu(qm + qr)u(x) — A (g — qm)u(y).

where the parameter A is a measure of loss aversion.* A > 0 implies loss aversion (losses loom larger
than gains), and A < 0 implies gain attraction (gains loom larger than losses).In this formulation,
u is the person’s intrinsic utility over outcomes (e.g., that might be used under EU), where we have
normalized u(0) = 0.

Applied to our context, the indifference values are determined from:

=
s
!

pu(hyp) — Ap(1 — p)u(hlyp)
pru(hlg) + (1 —r)u(M) — Apr(1 — pr)u(h’z) — AL —r)r(l — 2p)u(M)
ru(M) — Ar(1 —r)u(M) = pru(hlp) — Apr(1 —pr)u(hip)

2
s
|

4The Készegi and Rabin (2007) model has two parameters, a parameter n which captures the relative importance
of gain-loss utility versus intrinsic utility, and a parameter A\ that captures loss aversion. However, under CPE these
parameters always appear as the product n(A — 1) and thus cannot be distinguished, so we define A = n(\ — 1).



from which we can derive:

o =™ (s 0)

. 1+A(1—-7)(1—-2p)
“B“l(zm—Au—mw “MO

—T

* _ uil
op (p(l —A(1—pr))

u(M))

To ensure this model is well-behaved, we put two restrictions on the range of A. First, if A
becomes too positive, utility can be decreasing in h. For instance, the utility from lottery D can be
written as [pr — Apr(1 —pr)]u(h), and this is increasing in h only if A < 1/(1 —pr). To rule out these
perverse cases, we restrict A < 1. Second, if A becomes too negative, the indifference values can be
smaller than M. For instance, h% 5 > M requires 1/(p(1 — A(1 —p))) > 1 or A > —1/p. To rule out
these perverse cases, we restrict A > —1.

With these restrictions in place:

1 1-A(1—7)
A%, >0 < h%, > ht — >
cR AB = 70D p(1 = A1 —p)) p(1 = A1 —pr))
At >0 = hWyp >hip — 1+A1-r)(1-2p) > 1-A1—-7)
1 1+A(1—7r)(1—2p)
A* >0 <= h%,>h%, = >
MX AB = TAB p(1 = A1 —p)) p(1 = A1 —pr))

Note that, much as for the value function under OPT and CPT, the utility function u is irrelevant
for the model’s predictions for the sign of A%, Af, and A}y, where in this model these are fully

determined by the value of the parameter A.

Koszegi-Rabin CPE Result:

(1) A€ (0,1] implies A} p > 0, A%~ >0, and A}, <O.

(2) A e [—1,0) implies Afp <0, Afn <0, and A}, > 0.
Proof: Consider first the Af, condition, which we can write as:

1 1A —7)

AL R :
or: 0 = T RA T T AL pr)

The LHS is independent of ». The RHS is equal to the LHS when r = 1, and moreover

dRHS (1—A1l—pr)A—(1—A(l—7))Ap (1 —p)(A—A?)
dr (1—AQ1 —pr))? (1= A —pr))?




If A e (0,1], then A — A? > 0 and thus dRHS/dr > 0, from which it follows that A%, > 0 for all

r<l1.

If A e [—1,0), then A — A? < 0 and thus dRHS/dr < 0, from which it follows that A¥ , < 0 for all

r<l1.

Next consider the A¥ . condition, which we can write as:

Abte:0 = 1+A1—-7)(1-2p) : 1-A(1l—r)

— 2A1—7r)(1—=p) : O

Since the LHS is positive for A € (0,1] and negative for A € [-1,0), A¥, > 0 for any A € (0,1] and
Ak <0 for any A e [—1,0).

Finally consider the A}, condition, which we can write as:

1 14+ A1 —7)(1-2p)
1-A(1l—p)  1-—A(1—pr)

Ayx:0 <

The LHS is independent of r. The RHS is equal to the LHS when r = 1, and moreover

dRHS (I -=A1—pr)(—A(1—=2p)) — (1 + A1l —7)(1—2p))Ap

dr (1—A(1—pr))?

Ap—1)+A°(1-2p)(1—p) (1—p)A[-1+A(1—2p)]

(1—A(1—pr))? - (1—A1—pr))?

For A € (0,1], p > 1/2 clearly implies dRHS/dr < 0, and when p < 1/2 then A < 1 implies
—1+4 A(1 —2p) < 0 and thus again dRHS/dr < 0. It follows that A%}, < 0 for any A € (0, 1].

For A € [-1,0), p < 1/2 clearly implies dRHS/dr > 0, and when p > 1/2 then A > —1 implies
—1+ A(1 —2p) < 0 and thus again dRHS/dr > 0. It follows that A%,y > 0 for any A € [-1,0).



C.4 Bell Disappointment Aversion (Bell DA)

Next, we consider predictions from Bell’s (1985) model of disappointment aversion. Under this model,

the utility from a lottery X = (z1,p1;...; 2N, pN) 1S

N N
UX) = (Z pnu(acn)) - B (Z ppd (u(:cn) < U) (U - u(:nn))> ,
n=1 n=1

where u(-) is an intrinsic utility function, and U = YV | p;u(z;) is the expected intrinsic utility. When
the parameter 3 > 0, it reflects a (constant) marginal disutility of disappointment experienced when
one’s realized intrinsic utility is below the expected intrinsic utility. If § < 0, then —f effectively
reflects a (constant) marginal utility of elation experienced when one’s realized intrinsic utility is
above the expected intrinsic utility.?

Applied to our context, the indifference values for h% 5 and hf., are determined from:
w(M) = pu(h}p) — B(1—p)(pu(hlp) —0)

ru(M) — B(1 —r)(ru(M) —0) = pru(hgp) — B(1 —pr)(pru(hip) —0)
and thus

* o u—l 1 u an * _ u—l 1 _5(1 _T) u
Fap = <p<1—5<1—p>> (M)> 4 hep <p<1—/3<1—pr>> (M)>

Note that for two-outcome lotteries such as our lotteries B, C, and D, the utilities under Bell DA

are equivalent to those under Koszegi-Rabin CPE, where [ replaces A. Hence, we need an analogous
restriction that the range of 3 is [—1, 1].

For the h* z, indifference value, we must carefully assess whether, at the indifference value, u(M)
is larger or smaller than the expected intrinsic utility pru(h¥ z/)+ (1 —r)u(M) because that matters
for the utility from lottery B’. We can write pru(hz) + (1 —r)u(M) > u(M) as u(h z) > u(M)/p.

If we assume that u(h% z,) > u(M)/p, then the h¥ 5 is determined from:

u(M) = pru(hz%z) + (1 —=r)u(M)—pB(1 - T)(pru(hj‘%a) + (1 = r)yu(M) — u(M))
—3r(1 = p)(pru(hyg) + (1 = r)u(M) - 0)

Bell (1985) further assumes that u(z) = 2 and has separate parameters for disappointment (d) and elation (e). His
model is equivalent to the version in the text with 8 = d —e. Loomes and Sugden (1986) also use this formulation, but
they consider nonlinear disappointment and elation.

10



e g L=pp-r)
"ap <p<1 (=) (M)>

Note that as long as 1 — (1 —pr) > 0, u(h¥ /) > u(M)/p when 1 —Bp(1 —r) > 1—3(1—pr), or
B(1 —p) > 0, which holds as long as 8 > 0. Since 1 — (1 — pr) > 0 for all 8 € [0, 1], it follows that
I = B for all B e [0,1].

If we instead assume that u(h% /) < uw(M)/p, then the h¥ 5 is determined from:
w(M) = pru(Ri3) + (1 = ryu(M) — Br(1 — p)(pra(h52) + (1 = r)u(M) - 0)

w2 _ 1 (LA —p)(L—r)
has = <p(1—6r(1—p)> (M))

Note that as long as 1 —r(1—p) > 0, u(h¥ z) < u(M)/p when 1+ (1 —-p)(1-r) <1-pr(1—p),
or 5(1 —p) <0, which holds as long as 8 < 0. Since 1 — gr(1 —p) > 0 for all g € [—1,0], it follows

that h% 5 = hz(;), for all g € [—-1,0].

Given these indifference values:

1 1-8(1—-
Abp>0 <= Rhip>hip <= 1—5(1—p)>1—ﬁi(1—p?)
At >0 <= hig >hip, <= 1-ppl—r)>1-p(1~-r) if B e0,1]
1+8(0—-pd—-—r) 1-p0-r) .
L=Bri-p)  1-p—pn PO
1 1-— 1-— )
AVx >0 = hip>hip < 1—5(1—p)>1—gpf—p:§ if B €[0,1]
1 1+p0-pQ-r) .
T-pa-p 1-pra-p o OEEHO

Hence, under Bell DA, the model’s predictions for the sign of A%, Af~, and A}, y are determined

by the value of the parameter 3.

Bell DA Result:

(1) Be(0,1) implies Afp > 0, Afs > 0, and A}y < 0.

(2) B e (—1,0) implies A% <0, Afn <0, and A%,y > 0.

Proof: For Af, the condition is equivalent to that under Koszegi-Rabin CPE, and thus the proof

is the same.

Next consider the Af condition.

11



For g€ [0,1], At >0if 1 —fp(1 —7r)>1— (1 —r) or (1 —7)(1 —p) > 0, which holds for any
B e[0,1].

For g e [-1,0], A{, < 0if

L+ —p(L—r) _ 1-B1-r)
1—pr(l—p) 1—p8(1—pr)
1+B1=p)(1=r)A-B(1L-pr) < (1-B(1-7)(1-p5r(l-p))
B =p)(1—r) = (1 —pr)) = p*(1—-p)(A—7)(1—pr) —B(A —pr)+ 21 —p)(1 —r)r
Bl —=p)(1=7)1 =LA —pr+r)) 0

A

A

which holds for any g € [—1,0].
Finally consider the A}, condition.

For g € [0,1]:
1 - 1—5})(1—7“)
1-B(1—-p) 1-p1—pr)

The LHS is independent of ». The RHS is equal to the LHS when r = 1, and moreover

Ayx:0 <=

dRHS _ (1—pB(1—pr))(Bp) — (1 — Bp(1 —r))(Bp) —53°p(1 - p)

dr (1=p(1—pr))? (1 =B —pr))?
Hence, j € [0, 1] implies dRHS/dr < 0, and thus A%,y < 0 for any r < 1.

For g e [—1,0]:
. ] 1 >1+B(1—p)(1—r)
1-p5(1—p) 1—pr(l—p)

The LHS is independent of r. The RHS is equal to the LHS when r = 1, and moreover

Ayx:0 <

dRHS _ (1-pr(l—p)(-B(1-p)) - (1 -BL-p (A -1)(-B1-p)  p*1-p)?

dr (1—pr(1—p))? (1 -1 —pr))?

Hence, 5 € [—1,0] implies dRH S/dr > 0, and thus A%,y > 0 for any r < 1.

12



C.5 Gul Disappointment Aversion (Gul DA)

We next consider predictions from the Gul (1991) model of disappointment aversion. Under this

model, the utility from a lottery X = (21, p1;...;zn, pn) is the U(X) that satisfies

N N
U(X) = (Z pn“@«“n)) - B (Z pal (u(zn) < U(X)) (U(X) - U(xn))> >
n=1 n=1

where u(z) is an intrinsic utility function, and a person experiences disappointment when their
realized intrinsic utility is below the overall utility of the lottery U(X). As in Bell DA, g > 0 is
disappointment aversion while § < 0 is elation-loving. Applying this to binary gambles of the form

X = (x,qm;0,qr), this becomes

UX) = grru(e) = far(U(X) =0)) = U(X) = 1 —u(a)

Gul imposes 8 > —1, which guarantees that U(X) is increasing in the payoff = for any ¢r. This

model does not require an upper bound for 5. The indifference values h¥ 5 and hf,, are given by:

_ P " e 11+ B —p)
u(M) = m“(%g) = hijp=u’' <pU(M)>
M) = fulhlp) th::u—l(phffEhif:$uUwﬁ>

For the h% 5 indifference value, in principle, we must carefully assess whether, at the indifference
value, u(M) is larger or smaller than U(B’) (analogous to what we did for Bell DA). However, because
h* g is determined by the condition u(M) = U(B’), we know that uw(M) = U(B’) at H = h¥g,. It

follows that, at H = h’ 5, we have:

U(B') = pru(H) + (1 = rju(M) — fr(1 - p)(U(B') - 0)

or
N pr 1—r
UB) = 5ra=p "B+ 550 =5 )
Then h% 5, is derived from
_ pr * l—r * _ . —1 1+ﬂ(1_p)

13



Notice that h% 5 = h% g and thus A}, y = 0 (a well known property of Gul DA) and thus A%, = Ak

Hence, there is only one remaining condition to consider:

1+8(1—pr)

A=A >0 <= hig=h~h%g>hi{, <= 1+p5(1-p)> T3 B(1=r)

Hence, under Gul DA, the model’s predictions for the sign of A%, Af~, and A}, i are determined

by the value of the parameter f3.

Gul DA Result:

(1) B > 0 implies A}, = Afo > 0 and A}, = 0.
(2) B e (—1,0) implies A% p = Afo <0, and A%,y = 0.
Proof: The A}, condition is:

1 1-—
Abp:0 = 1+p(1—p): 1*;5/’3((1 _’:’))

The LHS is independent of ». The RHS is equal to the LHS when r = 1, and moreover

dRHS _ (1+8(1—7))(=fp) — (1 + B —pr))(=B) _ (B+B*)(1—p)

dr (1+8(1—r))? (I+p8(1—r))?

Hence, 8 > 0 implies dRH S/dr > 0 and thus Af, = Af. > 0, while 5 € (—1,0) implies dRHS /dr <
0 and thus A%, = Ao < 0.

C.6 Cautious Expected Utility (CEU)

We next consider the implications of the cautious expected utility (CEU) model introduced by Cerreia-
Vioglio et al. (2015). Unlike the models above, their focus is a representation theorem and not a
parameterized model, but firm predictions for our context follow from their axioms.

To illustrate, suppose we fix H = h%p so that B ~ A. Because lottery A is a sure amount,
their key axiom of negative certainty independence (NCI) implies that rB + (1 —7)0 2 rA+ (1 —7r)0
for any r € (0,1). Because rB + (1 —r)0 = D and rA + (1 —r)0 = C, CEU permits a CRP (i.e.,
Afp > 0) but not an RCRP. NCI also implies (see page 697 of Cerreia-Vioglio et al. (2015)) that

14



rB+ (1 —r)A ~ B for any r € (0,1). Because rB + (1 —r)A = B, CEU implies A ~ B ~ B’ and
thus A%, x = 0. Finally, A}, = 0 implies A%, = Afp.
To summarize, when the predictions of CEU differ from EU, those predictions are Af = Ay > 0

and A}, =0, i.e., the CRP-CCP-QMXP pattern.

C.7 Puri Simplicity Preferences

Finally, we consider the implications of the model of simplicity preferences introduced by Puri (2024).

Under this model, the utility from a lottery X = (z1,p1;...;x N, pN) iS

N
U(X) = ). pati(an) — w(N).
n=1

The first term is a standard EU term, and w(N) is a complexity cost term that is increasing in N—
i.e., lotteries with more possible outcomes have a larger complexity cost. Here, we derive predictions
for our context under the assumption that w(1) < w(2) < w(3).

To derive predictions, it is convenient to fix the parameters (M, p,r) and then define EU (X |h)
to be the expected utility of lottery X € {B, B’, D} as a function of h. Also, recall that, for any h,
EU(C)— EU(D|h) = EU(A) — EU(B'|h) = r(EU(A) — EU(BJh)).

Under this model, h{,, must satisfy FU(C) —w(2) = EU(D|h{p) —w(2) and therefore EU(C) =
EU(D|h{p). This in turn implies EU(A) = EU(B|h{.p) and thus EU(A) — w(1) > EU(B|h{p) —
w(2). Tt follows that h¥ 5 > h¥ and thus A%, > 0. Similarly, it also implies EU(A) = EU(B'|h{p)
and thus EU(A) —w(1) > EU(B'|h{p) — w(3). It follows that h% 5 > hE ) and thus Af, > 0.

Under this model, h% ; must satisfy EU(A) —w(1) = EU(B|h% z) —w(2) and therefore EU(A) <
EU(B|hY ). Since B’ is a mixture of A and B, we must have EU(A) < EU(B'|hY z) < EU(B|h% )
and thus EU(B'|h¥ 5) —w(3) < EU(B|h% ) —w(2). It follows that EU(A) —w(1) > EU(B'|hY5) —
w(3) and thus A% 5 > h%p and A%,y < 0.

To summarize, if w(1) < w(2) < w(3), then Puri simplicity preferences predict A%, > 0, Af~ > 0,

and A}y <0, i.e., the CRP-CCP-RMXP pattern.
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D The Impact of Noise on Valuations and Choices

In Section 2.5, we discuss the impact of noise on valuation tasks and binary choice tasks, and the
inferential challenges that arise as a result. This appendix formalizes the intuition in that section by
replicating and expanding on the theoretical results in McGranaghan et al. (2024).

We assume that the same underlying preferences drive behavior for both valuation tasks and
binary choice tasks. Using the notation from Section 2.2, a person will have three underlying indif-

ference values h¥ g, h% 5/, and hip for a fixed (p,r, M) that satisfy:
e Prefer A over B if and only if H < h¥p,
e Prefer A over B’ if and only if H < h¥ g, and
e Prefer C over D if and only if H < hfp.

We can then characterize that person’s CR, CC, and MX preferences by Af.p = hiip —hip, Afe =

Wi — hép, and Ay = hYp — h% g EU implies Af = Afp = Ay x = 0.

D.1 The Impact of Noise on Valuations

In Section 2.5, we provide an intuitive argument for how paired valuation tasks might yield unbiased
inference even in the presence of noise. Here, we provide a formal argument.
To combine a participant’s underlying preferences with noise to generate their stated valuations,

we begin with an assumption that is more general than the one used in Section 2.5:

Assumption 1v: Impact of Noise on Valuations

A person’s stated valuations (hap,hap,hcp) are hap = I'(hY5,€aB), hap = T'(Rg,cap),
and hep = I'(hEp,ecp), where (eap,eap,ecp) are noise draws from a continuous joint dis-
tribution with convex support, and I" is increasing in both arguments with I'(h,0) = h for all

h.

In Assumption 1v, the function I permits a variety of models for how a person’s underlying indiffer-
ence points combine with choice noise to generate their stated valuations. We highlight two special

cases of Assumption 1v:
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Assumption 2a: I'(h,e) = h+¢, and E(eap) = E(eap) = E(ecp) = 0.

Assumption 2b: TI'(h,e) is potentially nonlinear in h and e, but eap ik:ABsCD for some

d . .
kap >0, eap = kapecp for some kap > 0, and ecp is symmetric about 0.

Assumption 2a is the assumption we use in Section 2.5 and represents the simple case in which
stated valuations are given by the true underlying preference plus a mean-zero error term. Assumption
2b is less straightforward at first glance, but it is consistent with assumptions researchers frequently
use when analyzing choice data, where they model noise as a symmetric additive perturbation of

utility in the spirit of McFadden (1974, 1981). To illustrate, consider the following example:

Example: Expected Utility and Prospect Theory

Suppose that a person evaluates a lottery (z,q) with > 0 as 7(q)u(z), and evaluates a lottery
(x,q;y,s) with > y > 0 as 7(q)u(x) + w(q, s)u(y). This formulation reduces to EU when
7(q) = ¢, w(q,s) = s, and u(x) is a Bernoulli utility function. This formulation reduces to CPT
when 7(q) is a probability weighting function, w(q,s) = 7(q + s) — 7w(q), and u(z) is a value
function defined over gains and losses. Finally, this formulation reduces to OPT when 7(q) is a
probability weighting function, w(q, s) = 7(s), and u(z) is a value function defined over gains

and losses.

With this formulation, the underlying indifference points satisfy

(M) = n(pulty) o Whp=u (7T(1p)u<M>)
w(M) = w(pr)u(hlyp) + wlpr,1 —r)u(M) = Rip = ut <1 _ wf(o;;)l _ 7n)u(]\4)>
ROUOD) = wruiep) = ey = (2 un)

Now suppose we incorporate additive utility noise in the spirit of McFadden (1974, 1981) by

assuming that the stated valuations satisfy

u(M) = m(p)u(hap) + €an < hap =u™" (U(th) - 7??];3)>
w(M) = 7(pr)u(hap) +w(pr,1 — r)u(M) + eap - hoap = ut (“(hZB') B ;&%)
w()u(M) = (pr)uhop) + ccp = hep=u” (U(;%D) - 7:55))
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6 When applying this approach, it is

where e€4p, eap, and ecp reflect additive utility noise.
common to further assume that ecp has some distribution that is symmetric about 0 (e.g.,
a mean-zero normal or logistic distribution), and that esp 4 k' gecp and esp 4 Ky gecp for
some k'y5 > 0 and &’y 5 > 0 (e.g., when the error terms all have the same distributional form
but are permitted to have different variances). If so, then this formulation fits Assumption
2b with T'(h,e) = u=t(u(h) — ¢), where eap = kygecp/m(p), cap = Kymecp/m(pr), and
ecp = €cp/m(pr). Finally, EU with additive utility noise that is i.i.d. across the AB, AB’, and

CD choices (so k'y5 = k/yp = 1) implies eap = recp and eap = ecp.

Proposition 1v describes when unbiased tests of the null of A% =0, Z € {CR,CC, M X}, are possible

using paired valuation tasks and Assumption 2a or 2b.

Proposition 1v (Paired Valuation Tasks Can Yield Unbiased Tests): Consider a person who provides

stated valuations (hap,hap',hcp).

(1) Under Assumption 2a, E(Az) = A% for all Z e {CR,CC,MX}.

(2) Under Assumption 2b, Pr(Az > 0) = Pr(Az <0) =1/2 for all Z € {CR,CC, M X}.

The proof and intuition for Proposition 1 are virtually the same as those for Proposition 2 in
McGranaghan et al. (2024), and thus we omit them here. Part (1) establishes that we can test the
null of A% = 0 under Assumption 2a using a means test. Part (2) establishes that we can test the
null of A% = 0 under Assumption 2b using a sign test that tests whether the observed proportions

of Az >0 and Ay < 0 are the same.” These are the two tests reported in Table 4.

D.2 The Impact of Noise on Choices

In Section 2.5, we describe how noise can make it problematic to infer preferences when comparing
behavior across binary choice tasks. We provide a formal argument here. To model how a partici-
pant’s underlying preferences combine with noise to generate their choices in the three binary choice

tasks, we use the following alternative to Assumption 1v:

5The latter equations use (1/m(p))u(M) = wu(hhp), (1 — wpr,1 — 7)/aEr)u(M) = u(h%y), and
(x(r) (o)) u(M) = u(hip).

"Our formal test uses the following logic. If Pr(Az > 0) = Pr(Az < 0) = 1/2 for every observation, the likelihood
of observing at most n instances of Az > 0 out of N observations is equal to G(n, N), where G denotes the cumulative
distribution function for a binomial distribution with a 50 percent success rate. Hence, if we observe ny instances
of Az > 0 and n_ instances of Az < 0, the p-value for a two-sided sign test under the null of A% = 0 is 2 *
G(min{ni,n_},ny +n_).
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Assumption 1lc: Impact of Noise on Choices

A person’s realized indifference points are the (hap,hap, hcop) described in Assumption 1v.

Then:

e In an AB choice task, the person chooses A = (M,1) over B = (H,p) if and only if
H < hap =T(hY5,€aB),

e In an AB’ choice task, the person chooses A = (M,1) over B’ = (H,p; M,1 — r) if and
only if H < hap =T'(hY5,eam),

e In a CD choice task, the person chooses C = (M,r) over D = (H,pr) if and only if

H < hep =T(hip,ecp)-

In a choice task, the observed data comes in the form of the proportion of participants who choose

each option. Under Assumption lc, the relevant proportions are:
Pr(A|AB) = Pr(H < hag), Pr(A|AB’) = Pr(H < hup/), and Pr(C|CD) = Pr(H < hep).

Proposition 2 establishes conditions under which paired choice tasks yield biased tests of the null of

A% =0, Ze {CR,CC,MX}.

Proposition 2 (Paired Choice Tasks Can Yield Biased Tests): Consider a person who has h¥ 5 =
Wiy = hip = h* and thus AL, = Afo = Ay x = 0. Suppose that EABikABETCD and
eABvikABIECD for some kap > 0 and kap > 0, and define x = Pr(eap < 0) = Pr(eap <

0) = Pr(scD < O).

(1) If h* — H > 0 and thus the person has A > B, A > B’, and C > D, then:

(a) kap < 1 implies Pr(A|AB) > Pr(C|CD) > x (CRE); kap > 1 implies Pr(C|CD) >
Pr(A|AB) > x (RCRE); and kap = 1 implies Pr(A|AB) = Pr(C|CD) = x (OCRE);

(b) kap < 1 implies Pr(A4|AB’) > Pr(C|CD) > x (CCE); kap > 1 implies Pr(C|CD) >
Pr(A|AB’) > x (RCCE); and kap = 1 implies Pr(A|AB’) = Pr(C|CD) = x (OCCE);
and

(¢) kap < kap implies Pr(A|AB) > Pr(A|AB’) > x (MXE); kap > kap implies Pr(A|AB’) >
Pr(A|AB) > x (RMXE); and kap = kap implies Pr(A|AB) = Pr(A|AB’) = x (OMXE).

(2) If h* — H < 0 and thus the person has B > A, B’ > A, and D > C, then:
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(a) kap < 1 implies Pr(A|AB) < Pr(C|CD) < x (RCRE); kap > 1 implies Pr(C|CD) <
Pr(A|AB) < x (CRE); and kap = 1 implies Pr(A|AB) = Pr(C|CD) = x (OCRE);

(b) kap < 1 implies Pr(A|AB’) < Pr(C|CD) < x (RCCE); kap > 1 implies Pr(C|CD) <
Pr(A|AB’) < x (CCE); and kap' = 1 implies Pr(A|AB’) = Pr(C|CD) = x (OCCE); and

(¢) kap < kap implies Pr(A|AB) < Pr(A|AB’) < x (RMXE); kap > kap implies Pr(A|AB’)
Pr(A|AB) < x (MXE); and kap = kap implies Pr(A|AB) = Pr(A|AB’) = x (OMXE).

(3) If h*— H = 0 and thus the person has A ~ B ~ B’ and C ~ D, then Pr(A|AB) = Pr(A|AB’) =
Pr(C|CD) = x for all kap and kap.

Again, the proof and intuition for Proposition 2 are virtually the same as the proof and intuition
for Proposition 1 in McGranaghan et al. (2024), and thus we omit them here. Also, note that
Proposition 2 holds under Assumption 2b, and it would also hold under Assumption 2a if in addition
to E(eap) = E(eap) = E(ecp) = 0 we also have EABikABECD and sAB/ik:AB/sCD for some
kap > 0 and kygp > 0. Hence, paralleling Corollary 1 in McGranaghan et al., paired choice tasks
can yield biased tests while paired valuation tasks yield unbiased tests under the same assumptions
about noise.

Beyond replicating the CRE result from Proposition 1 in McGranaghan et al. (2024) and extending
it the CCE and MXE experiments, Proposition 2 also illustrates that the potential for misleading
conclusions is even greater when attempting to identify preference patterns by comparing behavior
across three binary choices. In particular, even when the true underlying preferences involve O CRP,
OCCP, and OMXP, many different patterns can emerge across the three choice tasks depending
on the values for kap and k4p and the experimenter-chosen parameter H. For instance, if kap <
kap < 1, then H < h* would lead to pattern CRE-CCE-RMXE, while H > h* would lead to pattern
RCRE-RCCE-MXE. Alternatively, if kap < 1 < kaps, then H < h* would lead to pattern CRE-
RCCE-MXE, while H > h* would lead to pattern RCRE-CCE-RMXE. Many other patterns are
possible, and the only cases where the prediction would be the pattern O CRE-QCCE-OMXE that
corresponds to underlying preferences are the knife-edge cases where either distance to indifference
is zero, h* — H = 0, or differential noise is absent, kap = kap = 1.

Proposition 2 establishes that choice tasks can yield a wide set of patterns when the true under-
lying preferences are QCRP-QCCP-QMXP. The same can hold even when people have different
underlying preferences. To illustrate, consider behavior under Assumption 2a with the additional

. d d
assumption of egp =kapecp and eap = kapecp for some kap > 0 and kap > 0. Under these
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assumptions, we can write the choice proportions as follows:

Pr(A|AB) = Pr(H <h%g+eap) = Pr <—5CD < s (Mg — H))
Pr(A‘AB/) = PI'(H < hZB/ + EAB/) = Pr <_EC’D < ﬁ(th/ - H))
Pr(C|CD) = Pr(H <hf,+ecp) =  Pr(—ecp <hip—H)

We next define h¥ , = (R 5 + hip)/2, hic = (g + hip)/2, and hY, . = (hY 5 + b 5/)/2, which
are the average indifference values for the three paired valuations. Using these, and recalling for
choices that CRE — RCRE = Pr(A|AB) — Pr(C|CD), CCE — RCCE = Pr(A|AB’) — Pr(C|CD),
and MXFE — RMXE = Pr(A|AB) — Pr(A|AB’), we can derive predicted behavior in choice tasks:

CRE — RCRE = Pr(—ecp <hip—H+Vep) —Pr(—ecp < hip — H)
CCE — RCCE = Pr(—ecp <hip—H+Voe)—Pr(—ecp < hip — H) (D.1)
MXE —RMXE = Pr(—eap <h%p —H+Vyx)—Pr(—eap <hy —H)

where
Uor =05 (5 +1) At + (55 = 1) (g — H)
Uoo =05 (g +1) Afe + (g1 — 1) (b - H) (D.2)
Uarx =05 (52 1) Ag + (B2 1) (Bgpx - H)

Hence, whether one’s choices exhibit a CRE, CCE, or MXE depends on whether Wogr, Yoo, or
W)rx are positive or negative. In the the knife-edge cases where h%, — H = 0 for Z € {CR,CC, M X}
or kag = kap =1, VorX Al g, Yoo Af o, and ¥y xocAy, . Generalizing our earlier conclusion,
in these knife-edge cases, choices will reveal the qualitative direction of underlying preferences.

In contrast, when B} — H # 0 for Z € {CR,CC,MX} and kap and kup are not equal to
one, then we have differential noise, and whether one exhibits a CRE, CCE, or MXE also depend
on the relevant distance to indifference, i.e., BgR — H, ﬁéo — H, or B*MX — H. Indeed, if we fix
the experimental parameters (M, p,r) and the associated underlying preferences (h% 5, h% 5/, hEp),
we can use equation (D.2) to derive predicted behavior as a function of the experimenter-chosen

parameter H:

- kap +1 .
CRE~RCRE >0 Uop>0s 3 o <, + 24811 Av o ypp 0 <1
2(1—/@43)
Ak >0 if kap = 1
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kap +1 )
— A% fhkag >1
2kap — 1) CC HRaB =
kap +1
2(1 —kap)

Ak >0 if kapg =1

H > h¥o—

CCE—-—RCCE>0 Ve >0< H<]_120_|- AE’C if kapr <1

H<B;4X+M * v ifkap < kap
2(kap — kaB)

MXE—RMXE>0< Uyyx>0< H>h7\4X‘WA§4X i Eug > kag
AB — NAB/

Aty >0 if kap = kap
Note that if the experimenter chooses H = I_I*C r» then participants’” CRE — RCRE will reveal the
sign of their underlying A% . An analogous point holds when the experimenter chooses H = BE‘C
or H = B}“W - However, without observing valuations, it is hard for the experimenter to select these
H’s. Moreover, if the experimenter is trying to use choices to identify patterns across the three
preferences, a single H may not be sufficient to accurately infer all three preferences.

Finally, we highlight how, as the experimenter varies the experimental parameter H, a variety
of biased patterns can emerge. For example, suppose h¥z = 36, h¥z = 34, and hip = 30, in
which case underlying preferences have the pattern CRP, CCP, MXP. If in addition k4p = 0.5 while
kap = 1.5, participants would exhibit a CRE for H < 42, a CCE for H > 22, and an MXE for
H < 37. Hence, for H € (22,37), participants would exhibit the CRE-CCE-MXE pattern consistent
with their underlying preferences. However, for H outside of this range we might observe the patterns
CRE-RCCE-MXE, CRE-CCE-RMXE, or RCRE-CCE-RMXE.

The message is clear: If one wants to learn about patterns of CR-CC-MX preferences so as to be
able to assess models of risk preferences, then using choice tasks will be problematic. In contrast,
under the same assumptions as the analysis here, valuation tasks can be used to get unbiased measures

of the underlying preferences Af p, Af~, and A}, .

D.3 Connecting Stage 1 Valuations and Stage 2 Choices

Our discussion in Supplementary Material D.1 and D.2 assumes that the same underlying preferences
drive behavior for both valuation tasks and choice tasks, and thus there should be a strong connection
between the two. In Section 4.3 of the main paper, we provide some evidence on that connection.
Here, we provide the underlying theory on which that evidence is based. Again, this follows a similar
treatment in McGranaghan et al. (2024).

Specifically, we consider Assumption 2a with the additional assumptions that e4p Ly ABECcD and
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EAB' 4 kapecp for some kap > 0 and kap > 0. In this case, equations D.1 and D.2 characterize the
predictions for stage 2 choices as a function of underlying indifference values h% 5, h¥ g/, and hf .
At the same time, Proposition 1 part 1 establishes that a participant’s stage 1 valuations hapg, hap,
and hop are unbiased measures of those underlying indifference values.

Hence, we conduct the following empirical analyses. First, we either (i) use each participant’s
stage 1 stated valuations hap, hap, and hep to directly generate (noisy) empirical measures Acp,
Acc, Ayvx, hor, hoo, and hyry, or (ii) use each participant’s stage 1 stated valuations hapg, hap,
and hop combined with our decomposition from Section 4.2 to generate posterior measures of an in-
dividual’s underlying preferences E[A% s|stagel], E[A%|stagel], E[A%,y|stagel], E[h% 5|stage 1],
E[h%|stage 1], and E[h}; |stage 1] (see Supplementary Material E.4 for details). We then test the

following predictions from equations D.1 and D.2:

(1) A person’s observed CRE — RCRE, CCE — RCCE, and MXFE — RMXE at stage 2 should

depend positively on their associated stage 1 value difference Acr, Acco, Anrx.

(2) With one caveat, a person’s observed CRE — RCRE, CCE — RCCE, and MXE — RMXE at
stage 2 should depend positively on their associated distance to indifference hor — H, hoc — H,
harx — H when the noise is more impactful for the second choice (the C'D choice for CRE and
CCE, the AB’ choice for MXE), and should depend negatively on their associated distance to
indifference when the noise is more impactful for the first choice. The caveat is that, while this
prediction holds when the magnitude of the relevant distance to indifference is not too large,
when that magnitude gets large enough (positive or negative), the relationship reverses because

Pr(—ez < h} — H) approaches zero (as in Figure 7 of McGranaghan et al. (2024)).

When we test these predictions, we increase power by combining data across different combi-
nations of (p,r). Because for each preference the impact of the value difference or the distance to
indifference is larger for larger p, in our empirical analyses we multiply these terms by p to make
them more comparable across different values for p.

We visually assess prediction (1) in Figure 6 and we visually assess prediction (2) in Supple-
mentary Figure D.1. Panels A-C of Supplementary Table D.1 provide corresponding formal tests
via regressions of CRE — RCRE, CCE — RCCE, and MXFE — RMXFE from stage 2 on the cor-
responding values of Az and hy — H from stage 1 (in both cases normalized by p). In each panel,
four different specifications are provided: (1) ordinary least squares using the full sample of 8408

stage 2 observations; (2) ordinary least squares using samples of 4204 stage 2 observations for which
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multiple elicitations of relevant h valuations were conducted at stage 1; (3) two-stage least squares
using samples of 4204 stage 2 observations for which multiple elicitations of relevant h valuations
were conducted at stage 1 and instrumenting for Ay and hy — H with the alternate elicitation’s
values, which accounts for potential measurement error in Ay and hz — H; (4) ordinary least squares
using the full sample of 8408 stage 2 observations, but replacing Az and hy — H with the posterior
expectations of preference given stage 1 behavior (i.e., E[A%|stage 1] E[h} — H|stage 1].

Figure 6 and Supplementary Table D.1 show substantial support for prediction (1) with significant
linkages between values of Az and corresponding differences in choice probabilities for CR, CC, and
M X problems across all specifications. Supplementary Figure D.1 and Supplementary Table D.1
also document the relevance of prediction (2) for all three problems. For C'R problems, the data
show a significant positive relationship between hcg — H and CRE — RCRE across all specifications,
indicating that noise is more impactful for the C'D choice than the AB choice. For CC problems the
data using raw valuations in columns (1) through (3) show limited relationship between hoc — H
and CCE — RCCE. However, when using the posterior expectation of preferences in column (4),
the data show a significant negative relationship between E[h¥|stage 1] — H and CCE — RCCE,
indicating that noise is more impactful for the AB’ choice than the C'D choice. For M X problems
the data show a significant positive relationship between hy;x — H and MXE — RM XE across all
specifications, indicating that noise is more impactful for the AB’ choice than the AB choice. All
three problems show the hallmarks of differential noise and the combined data suggest that noise has
the most impact on AB’ choices, followed by C'D choices, followed by AB choices.

Interestingly, these conclusions differ from the predictions of EU with additive i.i.d utility noise.
In particular, Example 1 from Supplementary Material D.1 derives that, under EU with additive
i.i.d. utility noise, eap = regp and € 4 = e¢p. In words, under EU with additive i.i.d utility noise,
the impact of noise on the AB’ and C'D choices should be the same, and both should be larger than

the impact of noise on the AB choice.
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CRE - RCRE

CRE - RCRE

Figure D.1: Predicting Stage 2 Results using Stage 1 Distance to Indifference

Panel A: CRE — RCRE

Panel B: CCE — RCCE

Panel C: MXE — RMXE
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Notes: Figure relates individual stage 1 measures of hcr — H, hcc — H, and hayrx — H to stage 2 measures of
CRE — RCRE, CCE — RCCE, and MXE — RMXEF, respectively. Panels A-C use raw stage 1 responses. Panels
D-F use the estimated population distribution of preferences from the decomposition in Section 4.2 combined with
a participant’s raw stage 1 valuations to generate posterior preference measures E[h z|stage 1], E[h¥|stage 1], and
E[h¥, |stage 1] for that participant. For each z-axis, one hundred equally sized bins are constructed with approximately
84 observations per bin for the CR and CC panels and approximately 42 observations for the MX panels. Within each
bin, the value of stage 2 choice differences is calculated to construct the y-axes. Due to a large of observations at some
values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make valuations comparable across
(p,r), all stage 1 measures are scaled by p to control for the fact that a fixed value of the measure is predicted to yield
a larger stage 2 effect the larger is p (see Supplementary Material D.3 for details).
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Table D.1: Regressions Predicting Stage 2 Binary Choices Using Stage 1 Valuations

(1) (2) 3) @
Multiple
Full Sample  Observations 2SLS Decomposed
; Preferences
Available

Panel A. CRE — RCRE € {—1,0,1}

PAcr 1.07 1.08 2.60 2.77
- (0.07) (0.09) (0.26) (0.16)
plhecr — H) 0.40 0.30 0.20 0.32
(0.07) (0.09) (0.12) (0.08)

Outcome Mean 10.45 10.04 10.04 10.45

Panel B. CCE — RCCFE € {-1,0,1}

pAcc 0.96 0.87 2.92 3.26
B (0.07) (0.09) (0.36) (0.18)
plhce — H) -0.03 —0.01 —0.16 —0.46
(0.07) (0.09) (0.14) (0.08)

Outcome Mean —5.77 —4.69 —4.69 —5.77

Panel C. MXE — RMXE € {—1,0,1}

PAN X 0.80 0.93 3.17 3.00
B (0.07) (0.10) (0.44) (0.23)
plhyx — H) 0.39 0.43 0.62 0.65
(0.06) (0.07) (0.11) (0.07)

Outcome Mean 16.00 15.91 15.91 16.00
Individuals 2102 1051 1051 2102
Observations 8,408 4,204 4,204 8,408

Notes: Table presents linear regressions of individuals’ stage 2 decisions on stage 1 measures of their Az and hz —H
for Z € {CR,CC,MX}. Panel A presents results for CR experiments, where the outcome is 1 if the participant
chose A and D (CRE), —1 if they chose B and C (RCRE), and zero otherwise. Panel B presents results for CC
experiments, where the outcome is 1 if the participant chose A and D (CCE), —1 if they chose B’ and C (RCRE),
and zero otherwise. Panel C presents results for MX experiments, where the outcome is 1 if the participant chose A
and B’ (MXE), —1 if they chose B and A (RMXE), and zero otherwise. Columns (1)-(3) use raw stage 1 responses.
Column (1) presents the full sample results for all four (p,r) combinations that participants saw. For panel C, we
use the valuations h/yp or h's s for the half of (p,r) that they exist for, and hap or hap' otherwise. Column (2)
restricts the sample to only the half of (p,r) conditions for which which we have multiple measures of all three
valuations. Column (3) leverages these multiple observations to implement instrumental variable regressions using
two-stage least squares, where we instrument for pA and p(h — H) with their duplicate measures. For Column (4),
we use the estimated population distribution of preferences from the decomposition in Section 4.2 combined with
a participant’s raw stage 1 valuations to generate posterior preference measures E[A% |stage 1] and E[h}|stage 1].
To make valuations comparable across (p, ), all stage 1 measures are scaled by p to control for the fact that a fixed
value of the measure is predicted to yield a larger stage 2 effect the larger is p (see Supplementary Material D.3 for
details).
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E Further Details on Decomposing Preference and Noise

In this appendix, we provide further details for the decomposition exercise in Section 4.2. In this
exercise, we derive an estimate for the population distribution of underlying preferences along with
the magnitude of decision noise. We then use these estimates for three purposes. First, we assess
how much of the variability in our data is due to heterogeneity in preferences versus noise. Second,
we derive what the histogram of response patterns from Figure 4 would look like if we were to remove
the decision noise. Third, we construct refined measures of individual preferences that attempt to

remove some of the noise.

E.1 Underlying Model and Estimating Its Parameters

For a fixed (p,r, M), let h* = (h¥ g, h¥ g/, h{:p) be a vector of underlying indifference values. The pop-
ulation distribution of h* has expectation E(h*) = (1% g, 15/, uep) = p* and variance-covariance

matrix

9
AB 04  Oapap Yapcp
= 2 _ oy
VItig = |0asap  05p  Oapcp |[=EX (E.1)
2
D OaBcp Oapcp  9p

For XY € {AB, AB’,CD}, we assume a person’s two elicited XY valuations are

where E(exy) = E(eyy) = 0, var(exy) = var(e'yy) = 0%y, and exy and €'y, are independent
of each other, of the underlying preferences, and of all other noise draws. Note that this model has
twelve parameters: three p%,- terms, three Gg(y terms, three 6xy, vz terms, and three agﬁf terms.
Now let h = (hap,hap,hcp, Wyg. Wyg, hiep) denote a vector of observed valuations.® Under
these assumptions, we can derive the predicted mean and variance-covariance matrix for the observed

h as a function of the 12 parameters of the underlying model:

E(h) = (Wap, Wap D> BAB, KAp BOD) = 1

8Recall that each participant faces four (p,r) combinations. For two of those, the participant provides all six
valuations, while for the other two, they provide only (hap,hap/,hcp,hcp). Although we write everything in this
appendix based on the former case, we use all of our data in the analysis, making the appropriate adjustments when
only the C'D response has multiple elicitations.
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2 2 2
04p + 04  OaBap OaB,cD 04p OaB.AB OaB,cD

Oapap g +0%p  Oap.cp 0aB,aB s Oap'.cD
V(h) - 9aB,cD Oapcp  Oip+0kp  Oapcp OaB.cD 0% _ 5
0% 5 OaB,AB Oapcp 04 +04is  Oapap OaB,cD
OaB,AB 0% 5 OaB,cD Oapap  Oip +0%  bap.cp
8aB,cD Oap cD 0%, 9aB,cD Ouaprcp  OEp +0¢p

Each entry in V(h) is a theoretical prediction for an empirical moment. For instance, var(hap) =
0% 5 + 04, and cov(hap, h'y5) = 0% 5. Hence, we can obtain estimates for the 12 model parameters
by calculating the relevant sample moments or combination of sample moments. Specifically, using
“hats” to denote estimates and the subscript s to denote sample moments, we can derive estimates

for the model’s 12 parameters using:

By = Es(hxy)
%(Y = covs(hxy, Mxy)
§XY,WZ = covs(hxy, hwz)
8%(}/ = vars(hxy) — covs(hxy, Mxy )

Using this approach, Appendix Table A.5 reports estimates for the model’s 12 parameters for each
of the 20 (p,r) combinations.”

Supplementary Material E.5 describes a more sophisticated estimation approach using MLE.
Because that approach requires additional distributional assumptions, is more time-consuming, and

is sensitive to starting values and other estimation details, we prefer the approach described here.

We note, however, that the MLE approach yields very similar estimates.

E.2 Assessing the Role of Heterogeneity versus Noise

Given these estimates, we can assess how much of the variability in our data is due to heterogeneity
in preferences versus noise. Consider first variability in the elicited indifference values hap, hap/, and
hep. The last three columns of Appendix Table A.5 report the estimated proportion of the variability

for each elicited indifference value that is due to preferences—i.e., the ratio var(h%y )/var(hxy) =

9In Appendix Table A.5, we use observations from both hxy and h'xy to calculate Es;(hxy) and vars(hxy).
Similarly, we treat an individual participant’s (hxy,hwz) and their (h'xy,hiy ) as two separate observations when
calculating covs(hxy, hwz).
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égfy/(ég(y + 6%y) for each XY € {AB,AB',CD}. Averaging across the 20 (p,r) combinations,
preference heterogeneity accounts for 61 percent of the variation in hap, 58 percent of the variation
in hyp, and 48 percent of the variation in hop.

Next consider variability in the preference measures Acgr, Acc, and Aprx. For Agr = hap —

heop, it is straightforward to derive that

var(Acgr) = var(ALg) + 0/2_‘3 + U%«D

and wvar(Afg) = 91243 + G%D —204B,cD-

One can perform analogous derivations for Agc and Ajrx. Appendix Table A.6 uses the estimates
in Appendix Table A.5 to calculate these six variances for each (p,r) combination.!® The last three
columns of Appendix Table A.6 report the proportion of the variability for each preference measure
that is due to preferences—i.e., the ratio var(A%)/var(Ay) for each Z € {CR,CC, MX}. Averaging
across the 20 (p,r) combinations, preference heterogeneity accounts for 31 percent of the variation

in Agg, 31 percent of the variation in Agc, and 25 percent of the variation in Apsx.

E.3 Simulating Preference Patterns

We next investigate what the histogram of response patterns from Figure 4 would look like if we
were to remove the decision noise. To do so, we make the additional assumption that the underlying

preferences have a joint normal distribution:
h* ~ N (p*,%%).

For each (p,r) combination, we use the estimated parameters in Appendix Table A.5 to generate
100,000 draws from a joint normal distribution for h*. We then convert each h%, draw into the
midpoint of its two closest integers (e.g., any draw strictly between $2 and $3 is converted to $2.50).
This approach is consistent with the valuations response scales in our experiment, since the switching
rows for anyone with an underlying h% strictly between $2 and $3 would be the $2 and $3 rows, in
which case we would assign them a valuation of $2.50. We then use these converted h%, terms to
generate the A%, terms.'! Figure 5 presents the distribution of preference patterns when we aggregate

across all 20 (p,r) combinations.

"When calculating things in this way, nothing guarantees that the calculated var(A%) > 0, and indeed there is one
instance where this problem arises (for Ay x when (p,r) = (0.3,0.5)). We ignore this case and focus on the other 59
cases.

YWhen carrying out this exercise, we do not impose the upper and lower bounds of our experimental price lists.
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Note that this approach permits null preference patterns, including EU consistency. However,

it does not permit preference patterns which would imply intransitivities between h% g, h% 5/, and
&p- Of the 27 possible preference patterns in Figures 4 and 5, only 13 can therefore emerge from
our simulation of preferences. The remaining 14 patterns can still emerge in the data due to decision

noise (and the fact that we have independent measures of the three preferences).

E.4 Using the Decomposition to Refine Measures of Individual Preferences

In Section 4.3 and Supplementary Material D.3, we link an individual’s stage 1 valuations to their
stage 2 choices. Specifically, we create measures of individual preferences using stage 1 valuations,
and then use those measures to predict stage 2 choice patterns. The simplest way to create measures
of individual preferences is to take their stage 1 valuations at face value; for example, a measure
of their underlying Af is simply Acr = hap — hep. An alternative approach is to combine
a participant’s stage 1 valuations with our decomposition estimates to generate refined measures
of their individual preferences. Intuitively, the decomposition provides us with a prior for each
participant’s (h% 5, h% 5, hEp), and a participant’s valuations provide a signal that we can use to
generate the corresponding posterior.

If h*, the exy terms, and the €’y terms are all jointly normally distributed, then (h*, k) is also

jointly normally distributed, specifically:
h* “* O D IPPY
h 7 o1 X

where

045  Oapap Oapcp 04  Oapap Oascp
_ 2 2
Y12 = |bapap 0%  Oap.cp Oapap  Ohp  bBap.cp

Oapcp Oapcp 0ip  Oapcep Oapcp  Oip
Hence, if participant i provides a set of valuations h;, the conditional distribution of h* given h = h;

is h’*‘h:hi ~ N(p’;ostv E;ost) where

“zost = H* + Z3122_1(’“ - H)
DIRGINESD YR YIPS SRED ol

pos
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Again, our goal is to obtain more precise measures of a participant’s A% terms (for Figure 6) and
B} terms (for Supplementary Figure D.1). It is straightforward to use the parameter estimates in
Appendix Table A.5 to generate py . for each participant.'> We denote the components of Hpost DY
E[h% g|stage 1], E[h% g/|stage 1], and E[h{|stage 1]. These represent our more refined measure of
the participant’s h* terms. We then use these define the following more refined measures for the A%

7%
terms and h%y- terms.

E[A} p|stage 1] h¥ glstage 1] — E[h{ p|stage 1]

E[A} - |stage 1]

B[
E[hY 5/ |stage 1] — E[h¢p|stage 1]
E[A%,x|stage 1] = E[hY g|stage 1] — E[h% g |stage 1]
E[h}plstage 1] = (E[h¥glstage 1] + E[hE p|stage 1])/2
E[h%|stage 1] = (E[h* 5 |stage 1] + E[hE p|stage 1])/2
E[h%, y|stage 1] = (E[h% glstage 1] + E[h% p/|stage 1])/2

The refined measures E[h% glstage 1], E[h% g /[stage 1], and E[h}|stage 1] are all tightly corre-
lated with their respective raw measures hap, hap/, and hop, with correlations of 0.89, 0.88, 0.83,
respectively. Similarly, E[A% g|stage 1], E[Af|stage 1], and E[A}, i |stage 1] are tightly correlated
with Acr, Acc, and Ayrx, with correlations of 0.79, 0.79, 0.69, respectively. Finally, E[h 5|stage 1],
E[izyc|stage 1], and E[h%,|stage 1] are tightly correlated with hcr, hoe, and hyrx, with correla-
tions of 0.91, 0.91, 0.92, respectively. In Figure 6 and Supplementary Figure D.1, we predict stage 2
choices using both the raw measures and the refined measures. The qualitative conclusions are much

the same, although the refined measures make the link between stages more precise.

E.5 Decomposition Using MLE

Our analysis in Supplementary Material E.1 through E.4 estimates the model parameters using the
relevant sample moments or combination of sample moments. The advantage of this approach is
that it requires fewer distributional assumptions and implementation assumptions. For example, our
assessment of the relative contributions of preference heterogeneity versus noise in Supplementary
Material E.2 does not require any distributional assumptions.

Here we describe an alternative approach to estimate the parameters via MLE. We assume as

in Supplementary Material E.4 that h*, the exy terms, and the ¢’y terms are all jointly normally

12Recall that each participant provides all six valuations for two of their (p, r) combinations, but only four valuations
for their remaining two (p,r) combinations. For the latter instances, everything above is adjusted appropriately.
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distributed, and therefore, h ~ N (u,X). Recognizing the interval nature of our valuation tasks,

an observation provides both a lower bound (¢) and an upper bound (v) on the participant’s h

valuations:
((hap) v(hap)
((hap) v(hap)
cmy — | Ser) and  o(h) - | ")
C(Wap) v(hyp)
C(Wyp) V(W)
¢(hep) v(hep)

For instance, if for an hxy valuation task the person switches between the row with H = $32 and
H = $33, then ((hxy) = 32 and v(hxy) = 33. For observations censored at the lower bound (i.e.,
the person always chooses the right-hand option, even when H = p - $30), we set ((hxy) = —©
and v(hxy) = p-$30, whereas for observations censored at the upper bound (i.e., the person always
chooses the left-hand option even when H = p - $30 + $50), we set ((hxy) = p - $30 + $50 and
v(hxy) = co. Finally, recall that we only collect &’y 5 and R, for half of observations; all missing
valuations are treated as uninformative and assigned ((hyy) = —oo and v(hxy) = 0. Missing
valuations therefore play no role in the estimation of the parameters as they have a likelihood of 1
(and log-likelihood zero) for all (u, X).

Given a participant’s observed ((h) and v(h), the model-implied likelihood of that observation as
a function of the parameters in (p, X) is F'(v(h); p, 3) — F(((h); p, X), where F(-; u, 3) is the CDF
for h given parameters (u, ). From here, it is straightforward to set up the sample log-likelihood
summing over all participants.

We run this estimation separately for each of the 20 (p,r) combinations. Supplementary Tables
E.1 and E.2 provide MLE results analogous to those of Appendix Tables A.5 and A.6, where Sup-
plementary Table E.2 is constructed from Supplementary Table E.1 in exactly the same way that
Appendix Table A.6 is constructed from Appendix Table A.5 (see Supplementary Material E.2).

The message from the MLE estimation is much the same as that for our simpler estimation based
on sample moments. Supplementary Figure E.1 compares the MLE estimates from Supplementary
Table E.1 to the estimates from Appendix Table A.5. For the most part, the estimated parameters
are close to each other, although the MLE approach yields slightly more variability for both noise and
preference heterogeneity, which reflects that the MLE approach recognizes the interval nature of the

data and the noise implications of censoring. The central conclusion that preference heterogeneity
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accounts for roughly half of the variation in the hxy measures and one third of the variation in the

Az measures remains the same.
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Figure E.1: Comparison of Decomposition Results (Direct Calculation vs. MLE)

Notes: Figure relates calculated quantities from Table A.5 to MLE estimates from Supplementary Table E.1. Corre-

lation reported for all observations in each panel.

36



F Upside Potential Model: Estimation

In this section, we describe the details of the structural estimations described in Sections 5.2.3 and 5.3
of the main text, that is, the structural estimation of our upside-potential model and the structural

estimation of various prospect-theory models.

F.1 Data and General Approach

Our goal is to assess how different models perform in explaining the broad patterns in our data, and
in particular how the empirical valuations hag, hap/, and hgop react to changes in the experimental
parameters (p,r, M). To do so in a tractable and concrete way, we take the data to be the average
responses for hap, hap, and hop across the 20 different (p,r) combinations for which we collect
responses. Hence, the data consist of 60 observations, and these are presented together in the first
three columns of Appendix Table A.2.

Our general approach starts with the specification of a model with parameter vector ®. Given
a specified model, we derive the model-predicted h%y’s, XY € {AB, AB’,CD}, as a function of the
experimental parameters (p,r, M) and the model parameter vector ®. We denote these predictions
by h%y (p,r,M;®). We then use the 60 observations in the data to estimate ® using non-linear
least squares—i.e., estimating the equation hxy = h%y(p,7,M;®) + . Finally, we assess the
performance of each model using (i) its mean-squared error (MSE), (ii) its internal R?, (iii) the
correlation between the model-predicted h%y’s and the observed hxy’s, and (iv) the correlation

between the model-predicted A*’s and the observed A’s.

F.2 Estimating the Upside-Potential Model

We estimate the upside potential model in equation (B.1), where the model predictions for A%z,
h* g/, and hip are defined by equations (B.2), (B.3), and (B.4) from the Online Appendix. In this
model, the sole object to estimate is the function x(x).

It is important to note that our data are not optimal for estimating the shape of k. Recall that
we designed our experiment to study connected CR-CC-MX problems across a broad range of the
parameter space. The upside-potential model is our post-hoc attempt to explain the broad patterns
that emerged in our data that are inconsistent with existing prominent non-EU models. We did not
have this model in mind when we designed our experiment, and the data from our experiment do not
have the ideal variation one might want if the goal had been to estimate this model. Nonetheless,

this estimation gives some initial indication of what shape of x may be to rationalize our data.
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Because we have no a priori sense of the shape of x, we begin with a flexible functional form.
Within our design, M takes on the values 9, 15, 24, and 27, while Appendix Table A.2 reveals that
h takes on values 23.83, 26.35, 27.77 and then various larger values up to 42.56. Hence, we use the
following functional form that has ® = (01, 09,603,604, 05,06):

012 if x € [0, 9]
K(9:©) + Oo(x —9)  ifxe[9,15]
(:0) = k(15;0) + O3(x — 15)  if 2 € [15,24]
K(24;0) + Oy(x —24)  if 2 € [24,27]
K(27:©) + 05(z — 27)  if € [27, 36]
| K(36;©) + Og(x —36)  if x> 36

In our data, there are 15 instances each of k getting evaluated at x = 9, x = 15, x = 24, and
x = 27 (i.e., for each of the four values of M). In contrast, based on the mean h values we observe,
there are no x € (0,9) or z € (9,15), and only one instance each of z € (15,24) and z € (24,27).
Hence, 61, 02, 03, and 0,4 primarily capture (9), k(15), x(24), and x(27)—i.e., the values of k at the
four values of M. The remaining 58 values for the h’s lie in z € (27,43). We permit s to be either
linear (i.e., 05 = 6) or two-part-linear over this range, where for the latter case we put the kink at
x = 36 based on wanting similar instances of z above and below the kink.

In Supplementary Table F.1, column (1) reports estimates when we assume « is two-part linear
above x = 27, while column (2) reports estimates when we assume & is linear above x = 27. In
addition, Supplementary Figures F.1 and F.2 depict for each estimated model (i) the estimated &
function, (ii) the actual hxy valuations against their model-predicted values, and (iii) the actual A
measures against their model-predicted values.

Both the six and five parameter » functions fit the data well in-sample, delivering R? values above
0.75, correlations between predicted and actual hyy valuations around 0.9, and correlations between
predicted and actual A measures also around 0.9. Though the six-parameter model provides a slightly
better in-sample fit for the levels of response, the five-parameter model performs slightly better in
terms of correlation with the key preference measures, Acgr, Aco, and Aprx. The six-parameter
model also exhibits a slight non-monotonicity in the estimated  function between 27 and 36 with 05
estimated to be negative. We believe this, and the slightly worse match to the A measures is due to
overfitting and lack of variability for all types of hxy in the data. As can be observed in Figure F.1,

Panel B, the majority of observations between x = 27 and « = 36 are hop responses, while those
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above z = 36 also include h4p and hsp/. The six-parameter model can thus effectively dedicate a
parameter to fit a single type of data in the z € (27,36) region. This yields a slightly better fit of
the levels but compromises on fitting differences. Due to this possibility of overfitting, our preferred
estimates are those of the five-parameter model.

Within our preferred model, our estimates suggest that x has an S-shape. In an attempt to
capture this shape using a functional form with fewer parameters, we next consider a three-parameter

sigmoid function with ® = (6, 62, 03):

1 1
1+ exp(fa(z — 93))] A [1 + exp(f2(0 — ‘93))] '

K(z, ©) :91*[

In this formulation, the first bracketed term is a classic two-parameter sigmoid function (with pa-
rameters 6 and 03) that goes from zero (as © — —o0) to one (as x — 00). The third parameter (6)
is a multiplier on the bracketed term that makes the first term instead go from zero to ;. Finally,
the second term subtracts off the value of the first term when it is evaluated at x = 0 to ensure that
k(0) = 0.

Column (3) of Supplementary Table F.1 presents estimates for this functional form, while Supple-
mentary Figure F.3 provides a corresponding illustration of model fit. Again, substantial non-linearity
of the k function emerges in estimation. Imposing this functional form, however, does lead to a sub-
stantial reduction in explanatory power for the levels of the hxy valuations. Interestingly, however,
this three-parameter functional form delivers correlations between predicted and actual A measures
close to that of our preferred five-parameter model and exceeding that of the six-parameter model
noted above. Panel C of Figure F.3 makes clear that if one’s primary objective is to predict Acpg,

Acc, and Ajsx, this three-parameter functional matches the 60 differences in the data well.

F.3 Estimating Prospect-Theory Models

As a point of comparison for the fit of our upside potential model, we also estimate several variants
of prospect-theory models using the same 60 data points. As in Supplementary Material C.1, under

original prospect theory (OPT) as in Kahneman and Tversky (1979), a person’s valuations are given

1—m(1l—r)
m(pr)

hap = vL (U(M)) g = v ( U(M)) , and hop = v ( m(r) v(M)> .
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As in Supplementary Material C.2, under cumulative prospect theory (CPT) as in Tversky and

Kahneman (1992), a person’s hap and heop valuations are as above, while there h4p valuation is:

_ (Lt 1 =) —m(pr)
ha =7 ) o).

For either version, the objects to estimate are the probability weighting function m(¢) and the value
function v(x).

We first estimate these models using functional forms frequently used in the literature. Specifi-
cally, we assume the value function is v(z) = x®, and we consider both the one-parameter probability

weighting function from Tversky and Kahneman (1992),

1
m(q) = d 75
[¢° + (1 = q)°]

and the two-parameter probability weighting function from Lattimore et al. (1992),

B vq°
(@)= v¢° + (1 —q)°"

Columns (4) and (5) of Supplementary Table F.1 present estimates for CPT for these two functional
forms for m(q), and columns (7) and (8) does the same for OPT. Supplementary Figures F.4, F.5,

F.7, and F.8 depict for each estimated model (i) the estimated probability weighting function, (ii) the
actual hyy valuations against their model-predicted values, and (iii) the actual A measures against
their model-predicted values.

All four specifications have poor in-sample fit and substantially underperform our three-parameter
model of upside potential. The best fitting version of prospect theory is CPT with the two-parameter
m(q) which has an MSE of 18.03, an R-squared of —0.23, a correlation between predicted and actual
hxy valuations of 0.55, and a correlation between predicted and actual A measures of 0.7. The
negative R? value implies that a researcher would be more accurate if they predicted the mean
outcome for every response rather than using the model prediction.

Though these PT estimates do not fit our data well, the estimated parameters for the one-
parameter probability weighting function are close to those in the existing literature. Using data on
certainty equivalents for binary lotteries, Tversky and Kahneman (1992) provide median estimates
of @ = 0.88 and #; = 0.61. Using similar data, Bernheim and Sprenger (2020) estimate o = 0.94
and 0y = 0.72. In Supplementary Table F.1, our estimates are o = 0.80 and #; = 0.84 for CPT, and
a = 0.75 and 6; = 0.79 for OPT.
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It is perhaps not surprising that these prominent functional forms for probability weighting per-
form poorly in explaining our data since they were developed to generate a global CRP and CCP.
Hence, it is worth assessing now much better CPT and OPT might perform with a more flexible
functional form. Specifically, we consider the following six-part piecewise-linear functional form for

probability weighting:

0 if g =0
0o + b1q if ge (0,q1]
m(q1;0) + 020 —q1) ifqe[q, ]
(g ©) = 4 m(q2;©) +03(¢ —q2)  if g € [, G5]
m(q3;0) +04(qg —q3)  if g € [q3,qu]
m(q4;0) +05(¢ —q4)  if g€ [q, 5]
m(q5;0) + 06(q — q5) if g € [g5,1)
1 ifg=1

S

Note that to provide OPT and CPT with extra flexibility, this piecewise-linear function permits
(but does not require) discontinuities at ¢ = 0 and ¢ = 1. We selected the five kink points (i.e., the
gi’s) ex ante based on where 7(q) would need to be evaluated in each model—putting kinks at ¢’s
where 7 is frequently evaluated while also trying to have similar numbers of instances within each
segment. For the OPT model, we chose (1, ¢2, 3, G4, G5) = (0.15,0.3,0.5,0.7,0.8), whereas for CPT
we chose (q1, G2, G3,q4,q5) = (0.15,0.3,0.5,0.8,0.9). Also, note that this specification nests expected
utility, 0 = (0,1,1,1,1,1,1).

Columns (6) and (9) of Supplementary Table F.1 present these flexible estimates for CPT and
OPT, respectively. Supplementary Figures F.6 and F.9 depict for each estimated model (i) the
estimated probability weighting function, (ii) the actual hxy valuations against their model-predicted
values, and (iii) the actual A measures against their model-predicted values. For OPT, this additional
flexibility does relatively little to improve fit, and a researcher would remain more accurate predicting
the mean for every observation rather than using the model prediction. In contrast, for CPT, this
extra flexibility leads to qualitative fit improvements, roughly halving the MSE to 11.02 and delivering
a positive R? value. Importantly, however, the MSE of this best-performing CPT model is still
around three times larger than that of our preferred upside-potential model, while the R? value is
approximately three times smaller. This worse fit is particularly notable given that the flexible CPT

model has access to three more degrees of freedom than our preferred specification of upside potential.
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Table F.1: Estimates of Upside Potential and Probability Weighting

Upside Potential CPT Probability Weighting OPT Probability Weighting
Flexible Flexible Parametric Parametric Parametric Flexible Parametric Parametric Flexible
D) 3) 4) (5) (6) (7) (8) )
Utility Curvature
@ 0.80 0.43 0.35 0.75 0.73 0.70
(0.02) (0.05) (0.04) (0.02) (0.03) (0.03)
Upside Potential/Weighting Parameters
01 1.58 1.76 135.34 0.84 1.84 0.20 0.79 0.93 0.04
(0.26) (0.32) (37.59) (0.03) (0.22) (0.04) (0.02) (0.02) (0.01)
0 3.73 4.41 0.19 0.63 1.85 0.75 1.17
(0.67) (0.88) (0.00) (0.03) (0.13) (0.03) (0.13)
03 6.43 6.86 19.36 1.07 0.94
(1.04) (1.36) (0.39) (0.05) (0.06)
04 6.68 7.70 0.62 0.73
(1.63) (1.63) (0.07) (0.09)
05 —0.25 1.72 0.29 0.51
(0.41) (0.54) (0.10) (0.13)
O 6.95 0.54 1.32
(1.68) (0.11) (0.21)
07 0.69 0.98
(0.16) (0.16)
Observations 60 60 60 60 60 60 60 60 60
Degrees of Freedom 54 55 57 58 57 52 58 57 52
hxy-MSE 2.71 3.53 7.72 33.88 18.03 11.02 26.85 26.17 21.71
hxy-R? 0.82 0.76 0.47 —1.31 —0.23 0.25 —0.83 —0.78 —0.48
p(hxy, hxy) 0.92 0.91 0.83 —0.20 0.55 0.71 0.22 0.30 0.45
A-MSE 6.15 7.58 7.51 41.48 24.01 19.92 32.51 31.39 29.31
A-R? 0.66 0.58 0.59 —1.28 —0.32 —0.10 —0.79 —0.73 —0.61
(A, A) 0.88 0.90 0.89 —0.51 0.70 0.72 0.22 0.39 0.49

Note: Non-linear least squares regressions using 60 mean values of hap,hap/, hcp as observations. Standard errors in parentheses. R? values calculated as 1 — RSS/T'SS, where T'SS is sum of
squared deviations to the average value among the 60 observations, and RSS is the sum of squared residuals between the estimated model and the data. Negative values indicate that predicting
the mean for every observation would yield better fit than the estimated model. MSE values, R? values, and correlation between predicted and actual values, p, provided for both levels, hxy’s,

and differences, A’s.
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Figure F.8: OPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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G Screenshots from the Online Experiment

OPTION A: OPTION B:

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $24

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $25

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $26

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $27

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $28

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $29

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $30

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $31

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $32

100% CHANCE OF $24 OR

100% CHANCE OF $24 OR

Figure G.1: Example Price List for Stage 1 AB’ Valuation Task with p = 0.8 and r = 0.1
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OPTION A: OPTION B:

OR 20% CHANCE OF §0

80% CHANCE OF $24

OR 20% CHANCE OF §0

80% CHANCE OF $25

OR 20% CHANCE OF $0

80% CHANCE OF $26

OR 20% CHANCE OF $0

80% CHANCE OF $27

OR 20% CHANCE OF §0

80% CHANCE OF $28

OR 20% CHANCE OF §0

80% CHANCE OF $29

OR 20% CHANCE OF §0

80% CHANCE OF $30
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR

Figure G.2: Example Price List for Stage 1 AB Valuation Task with p = 0.8 and r = 0.1
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OPTION A: OPTION B:

OR 92% CHANCE OF §0
8% CHANCE OF $24
OR 92% CHANCE OF §0
8% CHANCE OF $25
OR 92% CHANCE OF $0
8% CHANCE OF $26
OR 92% CHANCE OF $0
8% CHANCE OF $27
OR 92% CHANCE OF §0
8% CHANCE OF $28
OR 92% CHANCE OF §0
8% CHANCE OF $29
OR 92% CHANCE OF §0
8% CHANCE OF $30
OR 92% CHANCE OF §0
8% CHANCE OF $31
OR 92% CHANCE OF §0
8% CHANCE OF $32
OR 92% CHANCE OF §0
8% CHANCE OF $33
OR 92% CHANCE OF $0
8% CHANCE OF $34
90% CHANCE OF $0 OR
10% CHANCE OF $24
90% CHANCE OF $0 OR
10% CHANCE OF $24
90% CHANCE OF $0 OR
10% CHANCE OF $24

Figure G.3: Example Price List for Stage 1 C'D Valuation Task with p = 0.8 and r = 0.1
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Option A

Option B

100% chance of $24

2% chance of $0
90% chance of $24

8% chance of $39

Option A

Option B

Figure G.4: Example AB’ Binary Choice from Stage 2 with p = 0.8, r = 0.1, and H = 39

Option A

Option B

100% chance of $24

20% chance of $0

80% chance of $49

Option A

Option B

Figure G.5: Example AB Binary Choice from Stage 2 with p = 0.8, » = 0.1, and H = 49

Option A

Option B

90% chance of $0

10% chance of $24

92% chance of $0

8% chance of $49

Option A

Option B

Figure G.6: Example C'D Binary Choice from Stage 2 with p = 0.8, » = 0.1, and H = 49
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Cluiz Question #1:

Imagine a person who values the lottery shown in Option A below at exactly $24.50.
That is, he would rather have the lottery than any sure amount less than $24.50, but
would rather have the sure amount for any amount greater than $24.50.

How would this person fill out the list below?

OPTION A: OPTION B:
75% GHANGE OF $a OR 100% CHANCE OF $0
?155:":’ g::ﬂgé g,':: :gﬁ OR 100% CHAMNCE OF $1
-,.%55:"’ gHH:ngE SFF :55 OR 100% CHANCE OF $2
75% CHANCE OF $30 OR 100% CHANGE OF §3
75% CHANGE OF $30 OR 100% CHANCE OF $4
-.-?55:":’ EHH:S.;?E g,:F :5,5, OR 100% CHAMCE OF §22
?EE’“ gﬂ:ﬂg& g,':: ?fg'é, OR 100% CHANCE OF §23
?255:";' gﬂ:ﬂg& g,':: ;fg,g, OR 100% CHANCE OF $24
-,.%E:’{’ g,ﬂ:ﬂg& SFF ?f:'f'é, OR 100% CHANCE OF §25
?255:’{' EHH:SEE SFF ?f:'f',.;\ OR 100% CHANCE OF $26
-,.%55:"’ EH”;"*,E;'EEE SFF §§',.5 OR 100% CHANGE OF §27
?EE’“ gﬂ:ﬂg& g,':: ?fg'é, OR 100% CHANCE OF §28
-,.%E:’{’ EH”;?SEEE SFF ?f:'f'é, OR 100% CHANCE OF §29
-,.%55:"’ g::ﬂg& g,':: :f:'f'é, OR 100% CHANCE OF $30

Figure G.7: Incentivized Comprehension Check #1
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Quiz Question #2:

Imagine a person who filled out the list like shown below.

a0% CHANCE OF 50
50% CHANCE OF $10

50% CHANCE OF 50
50% CHANCE OF 811

50% CHANCE OF 50
50% CHANCE OF $12

50% CHANCE OF 50
50% CHANCE OF $13

a0% CHANCE OF 50
50% CHANCE OF §14

60% CHANCE OF %0,
40% CHAMCE OF %30

60% CHAMNCE OF &0,
40% CHANCE OF 830

0% CHAMNCE OF %0,
40% CHANCE OF §30

60% CHANCE OF 30,
40% CHAMNCE OF $30

60% CHANCE OF 50,
40% CHANCE OF 830

B0% CHAMCE OF 50,
40% CHANCE OF 330

60% CHANCE QOF %0,
40% CHAMNGE OF $30

]
Pl

G60% CHANCE OF %0,
40% CHANCE OF $30

]
o

B T

50% CHANCE OF 50
50% CHANCE OF $13

T EE
| manags |
| manmsn
- | mapssan |
a

Given these responses in the list, what would this person choose in the single decision

below?

50% chance of $0
50% chance of $27

60% chance of $0
40% chance of 530

Figure G.8: Incentivized Comprehension Check #2
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Just for fun to take a little break: Can you spot the animal camouflaged below? Please
click on the image where you think the animal is.

Figure G.9: Example Visual Search Task

52



