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 2 

Abstract 37 

The past decades have seen tremendous progress in fundamental studies on economic choice in 38 
humans. However, elucidation of the underlying neuronal processes requires invasive 39 
neurophysiological studies that are met with difficulties in humans. Monkeys as evolutionary closest 40 
relatives offer a solution. The animals display sophisticated and well-controllable behavior that 41 
allows to implement key constructs of proven economic choice theories. However, the similarity of 42 
economic choice between the two species has never been systematically investigated. We 43 
investigated compliance with the independence axiom (IA) of expected utility theory as one of the 44 
most demanding choice tests and compared IA violations between humans and monkeys. Using 45 
generalized linear modeling and cumulative prospect theory (CPT), we found that humans and 46 
monkeys made comparable risky choices, although their subjective values (utilities) differed. These 47 
results suggest similar fundamental choice mechanism across these primate species and encourage 48 
to study their underlying neurophysiological mechanisms.  49 

  50 
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 3 

Introduction 51 

Risky decision making has been investigated for more than 200 years (Stigler, 1950) and remains a 52 
popular research topic (Blavatskyy et al., 2022; Bujold et al., 2022; Frey et al., 2017; Ruggeri et al., 53 
2020; Yang et al., 2022). While economists showed interest in building mathematical models to 54 
explain risky decisions and relating them to society (Moscati, 2016; Ruggeri et al., 2020; Schneider & 55 
Day, 2018), neuroscientists investigated the neural mechanism of decision making. To bridge the gap 56 
between the two directions of research, neuroeconomic studies by neuroscientists and economists 57 
have shown insightful results regarding the neural basis of risky decision-making (Bossaerts & 58 
Murawski, 2015; Konovalov & Krajbich, 2016; Serra, 2021). 59 

In neuroeconomic research, the model organisms used by economists and neuroscientists are 60 
usually different. Economists tend to focus on human behavior and therefore conduct almost all 61 
studies with human participants (Addessi & Bourgeois-Gironde, 2020). Human neuroeconomic 62 
studies commonly use neuroimaging. While a powerful tool for studying reward value and economic 63 
decision making, the temporal and spatial resolution limits the information one can obtain from the 64 
experiments. On the other hand, more precise single-neuron studies using electrophysiology or 65 
calcium imaging are restricted to specific human patients (Nourski & Howard, 2015). Therefore, 66 
experiments on closely related species are important for studying subjective reward value and 67 
economic decision making. 68 

While many animal species are suitable for neuroeconomic studies, neuroscientists often use rhesus 69 
macaque monkeys because the animals can understand complicated tasks and are phylogenetically 70 
closely related to humans (Brosnan, 2021; de Petrillo & Rosati, 2021). Recently, many important 71 
neuroeconomic discoveries were made in monkeys. For example, neurons in monkey orbitofrontal 72 
cortex (OFC) encode type, magnitude, probability and subjective value of reward (Ballesta et al., 73 
2020; Padoa-Schioppa & Assad, 2006; Pastor-Bernier et al., 2019; Tremblay & Schultz, 1999), 74 
amygdala neurons encode emotional and social choices (Grabenhorst et al., 2019), and dopamine 75 
neurons encode utility and update value (Lak et al., 2014; Stauffer et al., 2014). These important 76 
studies help us to understand the neuronal mechanism of value and choice. While both 77 
neuroscientists and economists conducted valuable studies on risky decision-making, substantial 78 
gaps remain because of their failure to directly compare risky decision making between humans and 79 
monkeys. Without this information, researchers would not know whether humans and monkeys 80 
perform risky choices in a similar or different way. 81 

Comparisons of decision making between humans and monkeys are largely limited to literature 82 
reviews (Addessi & Bourgeois-Gironde, 2020; Bourgeois-Gironde et al., 2021), but direct 83 
experimental comparisons have not been performed. In monkeys, studies demonstrated that 84 
monkeys maximize expected utility (Ferrari-Toniolo et al., 2019; Stauffer et al., 2015), cooperate 85 
with others (Grabenhorst et al., 2019), show loss aversion (Chen et al., 2006), and exhibit different 86 
risk attitude under different conditions (Ferrari-Toniolo et al., 2019; Pelé et al., 2014). In humans, on 87 
the other hand, studies investigated mathematical models and the influence of culture, education 88 
and social norms on risky decision making (Blavatskyy et al., 2022; Nielsen & Rehbeck, 2022; Ruggeri 89 
et al., 2020). By contrast, only a few behavioral studies that included both humans and non-human 90 
primates focused on simple social and economic games (Brosnan et al., 2011, 2012, 2017; Duguid et 91 
al., 2014; Farashahi et al., 2019; Möller et al., 2022), but not on quantifiable risky choices that are 92 
most commonly investigated in neuroeconomic research. Moreover, these studies tested only small 93 
choice sets, which limits the generality of the comparison between species.  94 
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Here, we investigated the similarity of risky choices between humans and monkeys, testing the 95 
independence axiom (IA) of expected utility theory with exactly the same design and settings 96 
between the two species. The IA states that extending both choice options of a binary option set by 97 
a common outcome should not change the participant’s preference. However, our previous work 98 
had shown violations of the IA separately in humans and monkeys (Ferrari-Toniolo et al., 2022; Jain 99 
& Nielsen, 2020). Therefore, by using this axiom as a test, we systematically compared risky choices 100 
between the two species. 101 

 102 

Methods 103 

Animals 104 

Two rhesus macaques (Macaca Mulatta) weighing 12.65 kg and 13 kg were used in this experiment. 105 
The monkeys were born in captivity at the UK Medical Research Council’s (MRC) Centre for 106 
Macaques (CFM). Monkey A (“Aragorn”) and Monkey T (“Tigger”) were pre-trained with visual 107 
stimuli and similar joystick tasks before the experiment. The protocol was approved by the Home 108 
Office of the UK and the experiments were continuously regulated by institutional (University of 109 
Cambridge) and national officers including the UK Home Office Inspector, the University of 110 
Cambridge Biomedical Services (UBS) Named Veterinary Surgeon (NVS), and the UBS Named Animal 111 
Care and Welfare Officer (NACWO). Monkey T was implanted with a recording chamber and a 112 
headpost before the experiment for other neuronal recording tasks. 113 

Experimental design for monkeys 114 

During the experiment, each monkey sat in a chair (Crist instruments) and chose between two 115 
gamble options using a cursor driven by a left-right joystick. The two gamble options were presented 116 
on a computer monitor 50 cm in front of the animal. In each option, reward magnitude (varying 117 
between 0 and 0.5 ml water) and probability (varying between 0 and 1) were represented by the 118 
height and width of a horizontal bar, respectively (Fig. 1A). At the beginning of each trial, a white 119 
fixation cross appeared at the center of the monitor, and the cursor was displayed to facilitate 120 
centering the left-right joystick. After two gamble stimuli were shown, the animal chose using the 121 
joystick. Further details of the experiment can be found in our previous studies using similar setups 122 
(Ferrari-Toniolo et al., 2019, 2022). 123 

We set up our list of tests according to the IA: 124 

∀ A ≻ B ⇒ λA + (1- λ)G ≻ λB + (1- λ)G; ∀G, ∀p ∈ [0, 1]    Eq. 1 125 

where A and B represent the two original options; λ (lambda) represents the probability of the 126 
original option in the new gamble option; G represents a gamble that commonly extends both 127 
original choice options. In this study, option A was always a safe option with a middle reward 128 
magnitude (0.25 ml); option B was a three-outcome (0, 0.25ml, 0.5ml) option. Option A and B were 129 
extended by a new gamble G according to Eq.1, thus forming options C and D: option C = λA + (1- 130 
λ)G, and option D =	λB + (1- λ)G. For gamble G, we set reward magnitude to 0 (no reward) and used 131 
three different probabilities λ: 0.75, 0.5 and 0.25, together with the original test set (λ = 1), thus 132 
forming four different test settings. All choice options were pseudorandomly intermixed. 133 

 134 

 135 
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 136 

Experimental design for humans 137 

We conducted 180 different online tests on 126 human participants. Each participant performed 138 
34.254 ± 7.2354 tests for each of the 4 lambdas (mean ± Standard Deviation). These tests were 139 
selected from a previous study (Jain & Nielsen, 2020) and had similar probability distributions as 140 
used for monkeys, including option A having only one reward amount delivered with p = 1.0 (Fig. 141 
1B). Specifically, the monkeys were tested with reward magnitudes of 0 ml, 0.25 ml and 0.5 ml, and 142 
the human participants were tested with reward magnitudes of $0, $10 and $20. All tests were 143 
pseudorandomly ordered with each participant. In each trial, two different options were shown to 144 
the participant on a computer monitor. Each option was shown as a pie chart, indicating the 145 
probability of reward, together with numbers indicating each option. Participants were paid for one 146 
randomly selected choice after completing the session, as described in previous economic studies 147 
(Azrieli et al., 2020). 148 

Statistical test of IA violations 149 

To test IA violations, we assessed the probabilities P(AD) and P(BC) that represent the two directions 150 
of violations across sessions in each monkey and across individual human participants. The violation 151 
AD indicates an Allais-type reversal: a participant who prefers the safe option A in option set AB 152 
prefers the “riskier” option D in option set CD, which can be stated as: p (A|{A,B}) > 0.5 and p 153 
(D|{C,D}) > 0.5. By contrast, the violation BC indicates a reverse Allais-type reversal: a participant 154 
who prefers option B in option set AB prefers option C in option set CD, which can be stated as: p 155 
(B|{A,B}) > 0.5 and p (C|{C,D}) > 0.5. The probability of a preference reversal in each direction, P(AD) 156 
or P(BC), was computed as proportion of monkey choice sessions or as proportion of single-shot 157 
human choices that switched in the corresponding direction. 158 

To confirm the preference changes across sessions in each monkey and across individual human 159 
participants, we performed two binomial tests for the two option sets (AB, CD). Significant 160 
preference changes in both option sets would be counted as a (strong) violation of IA (P < 0.05; one-161 
sided binomial test). 162 

Comparison of risky choices between humans and monkeys using a General Linear Model (GLM) 163 

We used Matlab to build GLMs (fitglm with normal distribution and linear link function) with human 164 
data to predict monkey behavior. The GLMs predicted the probability y of choosing option B or D 165 
based on three regressors, namely lambda (λ in Eq. 1), the probability p of obtaining the highest 166 
outcome, and the probability p of obtaining the lowest outcome) (fig. 1C): 167 

y = b0 + b1 λ + b2 p (highest outcome) + b3 p (lowest outcome) + e   Eq. 2 168 

After fitting the model (Eq. 2) to the human data, we entered the reward probabilities for the 169 
monkeys into Eq. 2 and predicted the probability of choosing option B or D. Inversely, after fitting 170 
the model to the monkey data, we entered the reward probabilities for the humans into Eq. 2 and 171 
predicted the probability of choosing option B or D. The predicted probabilities of choices were 172 
compared with the actual choice probabilities using Pearson’s correlation analysis. We compared the 173 
predictions of the human-fitted model to each monkey separately, and we compared the prediction 174 
of the monkey-fitted model to all humans’ data. To further investigate how each variable 175 
contributed to the GLM, we also assessed the beta coefficients (slope) for the regressors of the 176 
models. In order to fit the single-shot human choices, we calculated the GLM using the binomial 177 
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distribution and logit link function, repeating the procedure for each human participant and for each 178 
monkey session. We then plotted the betas of each model in a three-dimensional scatter plot after 179 
normalization (deducting the minimum value and log10 transformation) and after removing outliers 180 
with more than three median absolute deviations (Fig. 3).  181 

Cumulative prospect theory model 182 

Similar to previous studies (Ferrari-Toniolo et al., 2019, 2022), we used a softmax function to 183 
describe the choices as follows: the probability (p) of choosing an option M over an option N, given 184 
the option set MN, was defined as: 185 

                                    p (M|MN) = 1 / (1+e− γ (VA−VB))                             Eq. 3  186 

where γ is the noise parameter and V is the prospect value (i.e. the subjective value as defined in the 187 
cumulative prospect theory model. We defined the prospect value (V) using the utility function (u) 188 
and probability weighting function (w) in a cumulative form (Kahneman & Tversky, 1979; Tversky & 189 
Kahneman, 1992): 190 

𝑉 = ∑ π! 	 ⋅ 	u(outcome")"     Eq. 4 191 

π! = 𝑤(𝑝" +⋯+ 𝑝#) − 𝑤(𝑝"$% +⋯+ 𝑝#)    Eq. 5 192 

where n is the number of outcomes and i is the corresponding current outcome (ordered from worst 193 
to best).  194 

As in previous studies (Ferrari-Toniolo et al., 2019; Hsu et al., 2009), we used a power function as 195 
utility function, with parameter ρ (>1 convex, <1 concave): 196 

u	(outcome") = ( &'()&*+!
*,-	(&'()&*+)

)1  Eq. 6  197 

For the probability-weighting function, we used the two-parameter Prelec function with (α,			β): 198 

𝑤(𝑝) = 𝑒23(245(6))"    Eq. 7 199 

The α	and	β represent the shape (α < 1: inverse	S	shape, α > 1	regular	S	shape) of the probability-200 
weighting function and the position of the inflection point, respectively.  201 

Similar to our previous work (Ferrari-Toniolo et al. 2022), we estimated the parameters of the utility 202 
function and weighting function by maximum likelihood estimation (MLE). Choice data from each 203 
human participant or each monkey session were entered into Matlab (fminsearch function) to 204 
estimate the four parameters (γ, ρ, α, β). 205 

 206 

Results 207 

Experimental design 208 

We used a common experimental design to compare risky decisions between humans and monkeys. 209 
For monkeys, we showed  two stimuli on a computer monitor at 0.5 - 1.0 s after appearance of a 210 
central fixation cross. Subsequently, the animal chose between the two options using a joystick and 211 
received the reward 1s later. As shown in Fig. 1A, each of the option stimuli contained one, two or 212 
three horizontal bars whose width and height represented reward probability (p = 0 - 1) and 213 
magnitude (m = 0 - 0.5 ml), respectively. For example, a full-width horizontal bar in the middle would 214 
represent a safe option (p = 1) of a middle reward (m = 0.25 ml) (Fig. 1A right). For humans, we 215 
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 7 

presented each option as a pie chart and numbers that indicated reward amount (US$ 0 - 20) and 216 
probability (p = 0 - 1) (Fig. 1B). 217 

                     218 

 219 

Figure 1. Experimental design. 220 

(A) Example stimuli shown on the computer monitor to monkeys. Width and height of horizontal bars 221 
represent outcome probability and magnitude, respectively. The example shows options A and B. 222 

(B) Example stimuli shown to human participants (options A and B). 223 
(C) Stimuli showing two option sets for independence axiom testing. Option A had only the middle 224 

outcome with p = 1. Option C had a middle outcome with a specific probability and a low outcome of 225 
m = 0 ml and p (low outcome) = 1 – p (middle outcome). Options B and D each had three outcomes 226 
with specific probabilities. Preferring option A (A ≻ B) and option D (C ≺ D) represents an example 227 
violation of the independence axiom. 228 

(D) Marschak-Machina triangle with the two option sets shown in panel C. Dot positions in the triangle 229 
represent the outcome probabilities for options A, B, C and D. The probability of the middle outcome 230 
is 1 - p (low outcome) – p (high outcome). Thus, option A is a safe option with p = 1.0 of getting the 231 
middle outcome. 232 

Each test of the independence axiom (IA) employed two option sets. As shown in the example 233 
stimuli (Fig. 1C) and Marschak-Machina triangle (Fig. 1D), one option set (options C and D) was 234 
derived from the original option set (options A and B) according to the definition of the IA (Eq. 1). To 235 
comply with the IA, the participant’s preference should not change (e.g. if option A is preferred to 236 
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option B, then option C should also be preferred to option D). In order to test the IA fully, we varied 237 
the options widely across the full Marschak-Machina triangle in both humans and monkeys.  238 

Characteristics of risky choice in humans and monkeys 239 

The monkeys performed a total of 92 tests in each daily session (23 tests for each of the 4 lambdas) 240 
(30,997 trials in 34 sessions for Monkey A; 11,492 trials in 26 sessions for Monkey T). On average, 241 
each session consisted of a total of 911.68 ± 178.69 trials in Monkey A, and 442.00 ± 123.93 trials in 242 
Monkey T (mean ± Standard Deviation). 243 

Both monkeys preferred options A and C more (compared to the respective options B and D) when 244 
the probability of the high outcome of options B and D decreased, as shown by the decrease of dot 245 
size towards the bottom in the Marschak-Machina triangle (Fig. 2A, B). This observation suggested 246 
that the animals understood the stimuli and the task. 247 

              248 

Figure 2. Differential risk attitude across reward probabilities in the Marschak-Machina triangle. 249 

(A) Choice between options A and B (λ = 1.0). 250 
(B) Choice between options C and D (λ = 0.5). 251 

The size of black dots in the Marschak-Machina triangles represents the probability of choice in 34 daily 252 
sessions for Monkey A, 26 daily sessions for Monkey T, and 126 human participants. Red solid dots show 253 
choice indifference points (IPs); red lines show indifference curves from averaged session IPs in monkeys, and 254 
averaged IPs of all human participants. 255 
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Using the softmax function (Eq. 3), we estimated choice indifference points between option A (P 256 
(middle outcome) = 1.0; red circles in Fig. 2A) and option B (three outcomes; black dots) in each 257 
monkey in one daily session. The three lambda values tested (λ = 0.25, λ = 0.5, λ = 0.75) allowed 258 
three comparisons against λ = 1.0 (option set AB in Fig. 1C). Then we applied the three lambda 259 
values (0.25, 0.5 or 0.75) to options A and B to obtain option C (p (middle outcome) = 0.25, 0.5 or 260 
0.75; p (low outcome) = 1 - p (middle outcome)) and option D (three outcomes) (Fig. 1C, D) and 261 
estimated choice indifference points between option C (red circles in Fig. 2B) and option D in each 262 
monkey. All indifference points are shown as small red dots in Figs. 2 and S1.  263 

Interestingly, the probability of risky choices and the shape of indifference points differed between 264 
the two animals (Fig. 2A, B, top vs. middle). The difference was also apparent in the indifference 265 
curves (IC) connecting the averaged indifference points across sessions (red lines). Monkey A 266 
showed convex ICs with λ = 1.0 but inverse-S-shaped ICs with λ = 0.5. Monkey T showed inverse-S-267 
shaped ICs with both λ =1.0 and λ =0.5. These data demonstrated subject-specific risk attitudes. 268 

Many economics tests on humans use only one trial per participant in a larger number of 269 
participants (as compared to many repeated trials in much fewer individual monkeys). Accordingly, 270 
we performed 180 tests in our 126 human participants (45 tests for each of the 4 lambdas without 271 
any repetition of trial. As shown in Fig. 2, our human participants showed a similar trend (choosing 272 
the less risky option with higher probability of getting the high outcome), although their ICs differed 273 
substantially from those of our monkeys.  274 

 275 

GLMs reveal similarity of risky choices across species 276 

To quantitatively measure the similarity of risky choices between humans and monkeys, we first 277 
fitted a generalized linear model (GLM; Eq. 2) to the data of one species and then used the model to 278 
predict the other species’ behavior. Fig. 3A shows strong significant correlations between the 279 
predicted probability of choices (choosing safer option; same option set across sessions in monkey, 280 
across participants in human) and the actual probability of choices. The GLM fitted to the human 281 
data top panel) predicted well the behavior of both monkeys (Rho = 0.809, p = 3.76 x 10-20 for 282 

Monkey A; Rho = 0.833, p = 3.17 x 10-22 for Monkey T). Vice versa, the GLM fitted to the data of one 283 

monkey (bottom panel) predicted well the behavior of the humans (Rho = 0.732, p = 1.57 x 10-31 for 284 

data by Monkey A; Rho = 0.688, p = 1.35 x 10-26 for data by Monkey T). These results indicated 285 
similar risky choices between the two species. 286 

Next, we investigated whether humans’ and monkeys’ choices similarly reflected changes in the 287 
options’ parameters (probability of getting different reward magnitudes). To do so, we analyzed the 288 
beta coefficients of the GLMs. While the GLMs described the prediction of risky choices, the beta 289 
coefficients (regressors) of the GLMs indicated how much each parameter contributed to the risky 290 
choice. We fitted one GLM for each human participant and one GLM for each monkey session. As 291 
choices were not repeated in the individual human participants, we set up the model to predict 292 
single binary choices; the analysis used a binomial distribution and logit link function in the GLM. We 293 
found similar ranges of beta coefficients across the two species (Fig. 3B), suggesting similarity in risky 294 
choices between humans and monkeys. 295 
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                                296 

Figure 3. General Linear Models (GLM’s) of human data (probability of safer choices) predict monkeys' 297 
behavior and vice versa. 298 

(A) Correlations of choice probabilities predicted by GLM and actual choices. Each circle represents one 299 
test in the Marschak-Machina triangle (see Figs. 2 and S1). Pearson’s Rho, least squares lines. 300 

(B) Beta coefficients of GLMs fitted to data from humans (each participant; blue open circles) and 301 
monkeys (each session; red or black dots for Monkey A and Monkey T, respectively). The average 302 
betas for monkeys are represented by large open circles (red for Monkey A and black for Monkey T). 303 
PH and PL represent reward probability: PH represents p (high outcome) and PL represents p (low 304 
outcome) for the riskier option. 305 
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Choice differences between the species 306 

We compared choice probabilities between lambda = 1 (i.e. option set AB) and other lambdas (0.75, 307 
0.5, 0.25; option set CD) and checked for any choice shifts to identify violations. We quantified 308 
violations in two directions, the Allais paradox as originally described (Allais, 1953), and the reverse 309 
Allais paradox (Blavatskyy, 2013). Both monkeys showed significant IA violations in both directions; 310 
when preferring option A to B, they also preferred option D to C (‘Allais-type’; P < 0.05, binomial 311 
test; Fig. 4A); vice versa, when preferring option B to A, they also preferred option C to D (‘reverse 312 
Allais-type’; Fig. 4B); see Fig. S2 for additional tests in both directions. These violations differed 313 
between the two monkeys (Fig. 4, top vs. middle). Interestingly, choice variability may partly explain 314 
IA violations in monkeys (Fig. S3).  315 

              316 

Figure 4. Violations of independence axiom in monkeys and humans displayed in the Marschak-Machina 317 
triangle. 318 

(A) Allais-type violations.  319 

(B) Reverse-Allais-type violations.  320 

Dot size represents violation probability across 34 sessions in Monkey A, 26 sessions in Monkey T, and 126 321 
human participants, respectively. Hollow black circles indicate no violation for that option set. * significance (P 322 
< 0.05; binomial test). Data shown are for lambda = 0.5; for full results, see Fig. S2. 323 
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A number of human participants violated the IA (non-null probability of violation), as shown before 324 
(Blavatskyy et al., 2022; Jain & Nielsen, 2020; Nielsen & Rehbeck, 2022), although their averaged 325 
choices failed to reveal significant IA violations (P > 0.1; binomial test) (Fig. 4 bottom). Tour surprise, 326 
the violation patterns between humans and monkeys were quite different. For example, in Fig. 4, 327 
more violations were found at the left bottom corner in the Marschak-Machina triangle in humans 328 
than in monkeys. In contrast to the GLMs fitted to the human choice probabilities (Eq. 2), the GLMs 329 
fitted to the human IA violations (Eq. 2) failed to predict our monkeys’ behavior (Rho = 0.0786, P = 330 
0.5541, Pearson’s correlation analysis). Thus, despite the described inter-species similarities in risky 331 
choices, the more stringent IA tests nevertheless demonstrated some differences between the 332 
species.  333 

       334 

Figure 5. Utility and probability-weighting functions in humans and monkeys. 335 

Each black line indicates the function in each human participant or in each monkey session. The estimations 336 
used power utility functions and two-parameter Prelec probability-weighting functions (Eqs. 3 – 7). Blue lines 337 
and purple bands show averaged functions and 95% confidence intervals, respectively. 338 

 339 

Utility differences explain the choice differences between the species 340 

In order to explain the differences between the two species, we fitted power utility functions and 341 
two-parameter Prelec probability-weighting functions to the choices of both humans and monkeys 342 
according to Cumulative Prospect Theory (Eqs. 3 – 7; see Methods) (Fig. 5). The two species showed 343 
very different utility functions. Specifically, the utility parameter ρ differed significantly between the 344 

two species (P = 2.0950 x 10-13, Wilcoxon rank sum test), whereas the shape parameter α of the 345 
probability-weighting function varied only insignificantly between the two species (P = 0.4409). The 346 
more concave utility functions in humans compared to monkeys indicated more pronounced risk 347 
avoidance in our human participants. However, some utility function in individual human 348 
participants resembled those of individual monkeys (Fig. 5, individual black lines).  349 

  350 
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Discussion 351 

This study investigated similarities and differences in risky choices between humans and monkeys. 352 
We compared risky choices between the two species in a systematic way by using exactly the same 353 
experimental design. Although we found overall similar choices in the two species, specific tests of 354 
the independence axiom (IA) revealed substantial differences in utility functions between the two 355 
species, whereas their probability weighting functions were similar.   356 

Current electrophysiological research in monkeys aims to elucidate neuronal mechanism of risky 357 
choices. For example, recent monkey studies demonstrated that neurons in the orbitofrontal cortex, 358 
amygdala and anterior insular cortex compute reward value in risky choices (Ballesta et al., 2020; 359 
Grabenhorst et al., 2019; Suzuki et al., 2017; Yang et al., 2022). Follow-up studies propose more 360 
advanced reinforcement learning and economic models based on neuronal recording data (Dabney 361 
et al., 2020; Serra, 2021). While these studies provided critical information about neuronal decision 362 
mechanisms, it remains unknown to which extent these results in monkeys may explain human 363 
economic decision mechanism. Surprisingly, no previous study systematically compared human 364 
choice behavior and monkey choice behavior under risk. Therefore, our results demonstrating 365 
similar risky choices in humans and monkeys may provide foundations for these neurophysiological 366 
studies.  367 

Previous economics studies demonstrated that risk attitude depends on many factors, such as 368 
sequence of option presentation, loss or gain frames, social and cultural factors, and personality 369 
(Malenka et al., 1993; Mikels & Reed, 2009; Ruggeri et al., 2020; van den Bos et al., 2013). Even in 370 
well-controlled experimental setting, monkeys show differences in performing risk choices 371 
compared to humans, as shown in Figs. 4 and 5. Therefore, even with a strict experimental design 372 
and an absence of cultural influence, individual risk attitudes still exist that can be explained by 373 
differences in the subjective evaluation of rewards as shown by the differences of utility functions.  374 

Our previous work showed similar violations of the IA in monkeys and humans in specific settings of 375 
the IA (Ferrari-Toniolo et al., 2022). Our current study used a far larger range of IA tests in humans 376 
and option sets that directly reflected the axiom definition in monkeys. Using this extended design, 377 
we still found violations of the IA in monkeys that occurred in both directions (Allais and reverse 378 
Allais). These results confirm that expected utility theory cannot explain all choices under 379 
uncertainty and that the IA violations are not restricted to special circumstances (common 380 
consequence and common ratio effects). The monkeys had different individual risk attitudes and 381 
violation patterns, which is consistent with previous human studies on risky decision-making 382 
(Blavatskyy et al., 2022; Ruggeri et al., 2020). It would be interesting to investigate whether 383 
monkeys’ behavior is more similar to some (but not all) humans.  384 

In line with cumulative prospect theory, we interpreted IA violations as resulting from the subjective 385 
non-linear evaluation of reward probabilities, formally represented by the probability weighting 386 
function. On the other hand, the subjective non-linear evaluation of reward magnitudes (i.e. the 387 
utility function) cannot by itself generate IA violations but can contribute to their specific patterns. 388 
Our data revealed systematic IA violations in both humans and monkeys, suggesting a common 389 
probability weighting mechanism, while different utility functions generated different patterns of 390 
violations in the two species. Overall, these data suggest a brain mechanism for the evaluation of 391 
risky choice options that is compatible with cumulative prospect theory and, importantly, is common 392 
to humans and monkeys. 393 
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While most previous economic studies focused only on single deterministic choices (Blavatskyy et 394 
al., 2022; Blavatskyy, 2007), our study on monkeys tested choices repeatedly. The repeated choices 395 
reduced the chance of mistakes and noise that might explain some axiom violations (Blavatskyy, 396 
2007; Hey & Orme, 1994). The probability of IA violations was positively correlated with choice 397 
variability (standard deviation of choice probability; Fig. S3), which might be explained by the 398 
observation that most violations occurred close to the indifference points and curves of the 399 
Marschak-Machine triangle (Figs. 2 and S1) (McGranaghan et al., 2022). To conclude, our extensive 400 
and inter-species study confirms the well-known systematic and subject-specific violations of the IA. 401 

Critically, our study showed not only similarities but also differences between the two species, 402 
notably in subjective value (utility). The differences may be due to at least two factors. First, typical 403 
for monkey studies, we used large numbers of trials that provided substantial experience for the 404 
animals. By contrast, typical human studies use single-shot choices that fail to provide much 405 
experience with the tested option sets. This difference in experience between the two species may 406 
partly explain their different utility functions. Second, reward types and their amounts differed 407 
between the two species. Our human participants were tested with money, whereas our monkeys 408 
were tested with juice. Further, humans and monkeys seem to be risk seeking with small reward 409 
amounts and become gradually more risk avoiding with larger amounts, which is expressed by the 410 
curvature of utility functions that changes from convex via linear to concave (Stauffer et al., 2014; 411 
Farashahi et al., 2018). The risk-seeking with small reward amounts is recognized as the peanuts 412 
effect (Prelec, 1991). Thus, despite the difficulties of inter-species comparisons, different reward 413 
types and amounts may have contributed to the differences in utility functions. Future research may 414 
elucidate in more detail the differences between human and monkey utility functions with a more 415 
quantitative approach towards task experience and reward amount. 416 

 417 
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Supplementary figures  541 

     542 

Figure S1. Differential risk attitude across probabilities in the Marschak-Machina triangle. 543 

(A) Choices in the two monkeys: 34 sessions for Monkey A and 26 sessions for Monkey T. 544 

(B) Choices in the 126 human participants: four safer options ($10, p = 1; $10, p = 0.75; $10, p = 0.5; 545 
$10, p = 0.25).  546 

Each panel shows the probability of choosing a risky option. Each trial offered two options, a safer option (blue 547 
solid dot) and a riskier option (one of the black solid dots). We tested four safer options (0.25ml, p=1; 0.25ml, 548 
p = 0.75; 0.25ml, p = 0.5; 0.25ml, p = 0.25), as represented by the four Marschak-Machina triangles (lambda = 549 
1.0, lambda = 0.75, lambda = 0.5, and lambda = 0.25). The probability of choosing the risky option across 550 
sessions is represented by the size of the black solid dot. Indifferent points (IP) in each session, indicating p = 551 
0.5 of choosing the risky option (as estimated by softmax function), are represented by red dots. Red hollow 552 
circles represent average IPs across all sessions; blue dots represent the safer options. 553 
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 555 

 556 
Figure S2. Violations of independence axiom across probabilities 557 

Frequency and direction of the independence axiom violation across different probabilities. Dot size 558 
represents the probability of violation across (monkey) sessions or (human) participants, comparing different 559 
lambdas to the initial choice between options A and B (lambda = 1.0). (A) Red dots represent the probability of 560 
Allais-type violations. (B) Blue dots represent the probability of reverse-Allais-type violations. Hallow black 561 
circles indicate no violation for that choice set. * significance P < 0.05; binomial test in the two test sets. The 562 
correlation between predicted and actual violation was significant (GLM model with human data to predict 563 
monkey behavior, Spearman Rho = 0.201, P = 0.029), when lambda was used as the regressor.  564 
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 565 

 566 

Figure S3. Choice variability partly explains independence axiom (IA) violations in monkeys. 567 

(A) Choice variability (standard deviation) across different probabilities. Size of dots representing the 568 
variability (standard deviation) of choices averaged across sessions (34 sessions for Monkey A and 26 569 
sessions for Monkey T). 570 

(B) Correlation of choice variabilities (sum of two tests) and IA violations. 571 
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