WHEN CHOICES ARE MISTAKES

Kirby Nielsen (Caltech) John Rehbeck (the ohio state university) • Decades of empirical evidence has documented deviations from expected utility (EU) maximization

BACKGROUND

- Decades of empirical evidence has documented deviations from expected utility (EU) maximization
- Behavioral economics approach:
 - Descriptive models to capture violations
 - Often implicit: violation ⇒ individuals do not want to satisfy EU in this particular decision

BACKGROUND

- Decades of empirical evidence has documented deviations from expected utility (EU) maximization
- Behavioral economics approach:
 - Descriptive models to capture violations
 - Often implicit: violation ⇒ individuals do not want to satisfy EU in this particular decision
- Alternative interpretation:
 - Violations are mistakes
 - Individuals would prefer to maximize EU even if choices don't always reflect this

Option A:

Option B:

Q1: 100% chance of \$10

Q2:

Option A: Option B: Q1: 100% chance of \$10 vs. 80% chance of \$13 20% chance of \$0 20% chance of \$0 20% chance of \$0

Q2: 25% chance of \$10 75% chance of \$0

Q1:	Option A: 100% chance of \$10	VS.	Option B: 80% chance of \$13 20% chance of \$0
Q2:	25% chance of \$10 75% chance of \$0	VS.	20% chance of \$13 80% chance of \$0

Q1:	Option A: 100% chance of \$10	VS.	Option B: 80% chance of \$13 20% chance of \$0
Q2:	25% chance of \$10 75% chance of \$0	VS.	20% chance of \$13 80% chance of \$0

Many choose Option A in Q1 and Option B in Q2, which violates expected utility theory

	Option A:			Option B:	
	Q1:	100% chance of \$10	VS.	80% chance of \$13	
				20% chance of \$0	
$0.25 \cdot 01 +$	02:	25% chance of \$10	VS	20% chance of \$13	0.25.0
0.75 · 0	Q12.	75% chance of \$0	• 5.	80% chance of \$0	0.75 ·

Q1:	Option A: 100% chance of \$10	VS.	Option B: 80% chance of \$13 20% chance of \$0
Q2:	25% chance of \$10 75% chance of \$0	VS.	20% chance of \$13 80% chance of \$0

Behavioral explanations:

- Certainty effect
- Regret aversion
- Etc.

Q1:	Option A: 100% chance of \$10	VS.	Option B: 80% chance of \$13 20% chance of \$0
Q2:	25% chance of \$10 75% chance of \$0	VS.	20% chance of \$13 80% chance of \$0

Behavioral explanations:

- Certainty effect
- Regret aversion
- Etc.
- → Behavioral non-EU models, e.g., prospect theory (Kahneman and Tversky, 1979)

 Choosing Option A in Q1 and Option B in Q2 does not imply that the decision maker *wants* to violate expected utility MacCrimmon (1968); SLOVIC AND TVERSKY (1974); MacCrimmon and Larsson (1979)

- Choosing Option A in Q1 and Option B in Q2 does not imply that the decision maker *wants* to violate expected utility MacCrimmon (1968); SLOVIC AND TVERSKY (1974); MacCrimmon and Larsson (1979)
- Case Study: Savage vs. Allais (1950s)

- Choosing Option A in Q1 and Option B in Q2 does not imply that the decision maker *wants* to violate expected utility MacCrimmon (1968); SLOVIC AND TVERSKY (1974); MacCrimmon and Larsson (1979)
- Case Study: Savage vs. Allais (1950s)
 - · Allais introduced the Allais Paradox

- Choosing Option A in Q1 and Option B in Q2 does not imply that the decision maker *wants* to violate expected utility MacCrimmon (1968); SLOVIC AND TVERSKY (1974); MacCrimmon and Larsson (1979)
- Case Study: Savage vs. Allais (1950s)
 - Allais introduced the Allais Paradox
 - · Savage's decisions violated expected utility

- Choosing Option A in Q1 and Option B in Q2 does not imply that the decision maker *wants* to violate expected utility MacCrimmon (1968); SLOVIC AND TVERSKY (1974); MacCrimmon and Larsson (1979)
- Case Study: Savage vs. Allais (1950s)
 - Allais introduced the Allais Paradox
 - · Savage's decisions violated expected utility
 - Savage changed his decisions to be consistent with EU

- Choosing Option A in Q1 and Option B in Q2 does not imply that the decision maker *wants* to violate expected utility MacCrimmon (1968); SLOVIC AND TVERSKY (1974); MacCrimmon and Larsson (1979)
- Case Study: Savage vs. Allais (1950s)
 - Allais introduced the Allais Paradox
 - · Savage's decisions violated expected utility
 - Savage changed his decisions to be consistent with EU
 - Savage made a mistake

"In reversing my preference... I have corrected an error. There is, of course, an important sense in which preferences, being entirely subjective, cannot be in error; but in a different, more subtle sense they can be."

- Leonard Savage (1954)

• Are people "Savages" who change their decisions after departing from predictions of our model?

- Are people "Savages" who change their decisions after departing from predictions of our model?
- Or, do violations lead to renouncing the model?
 - E.g., cautious expected utility (Cerreia-Vioglio, Dillenberger, Ortoleva; 2015)

- Are people "Savages" who change their decisions after departing from predictions of our model?
- Or, do violations lead to renouncing the model?
 - E.g., cautious expected utility (Cerreia-Vioglio, Dillenberger, Ortoleva; 2015)

Why?

- Interpretation of descriptive models
- · Additional challenges for behavioral welfare

- To test this in a clean way, we focus on simple axioms
 - E.g., Savage violated the *independence* axiom of EU
 - When individuals violate an axiom, is it a mistake?

- To test this in a clean way, we focus on simple axioms
 - E.g., Savage violated the *independence* axiom of EU
 - · When individuals violate an axiom, is it a mistake?
- · Need three pieces of information to detect mistakes

- To test this in a clean way, we focus on simple axioms
 - E.g., Savage violated the *independence* axiom of EU
 - · When individuals violate an axiom, is it a mistake?
- · Need three pieces of information to detect mistakes
 - 1. "Ex-ante" preferences over axioms

- To test this in a clean way, we focus on simple axioms
 - E.g., Savage violated the *independence* axiom of EU
 - · When individuals violate an axiom, is it a mistake?
- · Need three pieces of information to detect mistakes
 - 1. "Ex-ante" preferences over axioms
 - 2. Violations of axioms

- To test this in a clean way, we focus on simple axioms
 - E.g., Savage violated the *independence* axiom of EU
 - · When individuals violate an axiom, is it a mistake?
- · Need three pieces of information to detect mistakes
 - 1. "Ex-ante" preferences over axioms
 - 2. Violations of axioms
 - 3. Revised choices when presented with inconsistencies

1. Do individuals prefer these axioms ex-ante?

- 1. Do individuals prefer these axioms ex-ante?
- 2. Do individuals who prefer an axiom violate it less often?

- 1. Do individuals prefer these axioms ex-ante?
- 2. Do individuals who prefer an axiom violate it less often?
- 3. **Main Question**: When an individual prefers an axiom but violates it, how do they reconcile this?
 - Change choices to agree with axiom? (à la Savage)
 - · Keep choices and renounce axiom?

- 1. Do individuals prefer these axioms ex-ante?
 - Yes, ~ 85% select axioms
- 2. Do individuals who prefer an axiom violate it less often?
- 3. **Main Question**: When an individual prefers an axiom but violates it, how do they reconcile this?
 - Change choices to agree with axiom? (à la Savage)
 - · Keep choices and renounce axiom?

- 1. Do individuals prefer these axioms ex-ante?
 - Yes, ~ 85% select axioms
- 2. Do individuals who prefer an axiom violate it less often?
 - No
- 3. **Main Question**: When an individual prefers an axiom but violates it, how do they reconcile this?
 - Change choices to agree with axiom? (à la Savage)
 - · Keep choices and renounce axiom?

- 1. Do individuals prefer these axioms ex-ante?
 - Yes, ~ 85% select axioms
- 2. Do individuals who prefer an axiom violate it less often?
 - No
- 3. **Main Question**: When an individual prefers an axiom but violates it, how do they reconcile this?
 - Change choices to agree with axiom? (à la Savage)
 - · Keep choices and renounce axiom?
QUESTIONS ABOUT WHAT WE ARE TRYING TO DO?

DESIGN

EXPERIMENT TIMELINE

+

~

~

Axiom Choices

Do individuals want to satisfy these axioms?

HOW WE INCENTIVIZE

- We incentivize the choice of an axiom by using the axiom to *automatically* implement choices on a subject's behalf
- For example:
 - Independence of Irrelevant Alternatives (IIA):

$$p = C(\{p,q,r\}) \Rightarrow p = C(\{p,q\})$$

HOW WE INCENTIVIZE

- We incentivize the choice of an axiom by using the axiom to *automatically* implement choices on a subject's behalf
- For example:
 - Independence of Irrelevant Alternatives (IIA):

$$p = C(\{p,q,r\}) \Rightarrow p = C(\{p,q\})$$

- If a subject "chooses" IIA:
 - We automatically choose p over q for them

HOW WE INCENTIVIZE

- We incentivize the choice of an axiom by using the axiom to *automatically* implement choices on a subject's behalf
- For example:
 - Independence of Irrelevant Alternatives (IIA):

$$p = C(\{p,q,r\}) \Rightarrow p = C(\{p,q\})$$

- If a subject "chooses" IIA:
 - We automatically choose p over q for them
- · If they do not choose IIA:
 - They choose between *p* and *q* themselves

$$p = C(\{p, q, r\}) \Rightarrow p = C(\{p, q\})$$

$C(\{p,q,r\})$

$C(\{p,q,r\})$

Options:

$$p = C(\{p, q, r\})$$

Options:

$$p = C(\{p, q, r\})$$

If You Pick:

p vs. q vs. r p

$$p = C(\{p, q, r\}) \Rightarrow p = C(\{p, q\})$$

If You Pick:

p vs. q vs. r p

$$p = C(\{p, q, r\}) \Rightarrow p = C(\{p, q\})$$

If You Pick:

p vs. q

$$p = C(\{p, q, r\}) \Rightarrow p = C(\{p, q\})$$

THIS IS WHAT SUBJECTS SEE

THIS IS WHAT SUBJECTS SEE

Yes, I want to use this rule

No, I will decide myself

THIS IS WHAT SUBJECTS SEE

We fix subjects' beliefs about the domain of lotteries

We fix subjects' beliefs about the domain of lotteries

- Domain:
 - Colors represent weakly-positive money lotteries
 - Payoffs from \$0-\$30
 - Probabilities from 0–100%
 - · Colors don't have any inherent meaning
 - E.g., grey is not "in between" black and white

We fix subjects' beliefs about the domain of lotteries

- Domain:
 - Colors represent weakly-positive money lotteries
 - Payoffs from \$0-\$30
 - Probabilities from 0–100%
 - · Colors don't have any inherent meaning
 - E.g., grey is not "in between" black and white
- · Subjects know the domain but not specific lotteries
 - Eliciting a preference for the *axiom*, not just specific instances of it

• Don't think it *always* should be true \Rightarrow don't select it

- Don't think it *always* should be true \Rightarrow don't select it
 - Payment lotteries could be any lotteries in the domain
 - If there are any instances where it wouldn't be true, shouldn't select it
 - Caveat: decision-making costs

- Don't think it *always* should be true \Rightarrow don't select it
 - Payment lotteries could be any lotteries in the domain
 - If there are any instances where it wouldn't be true, shouldn't select it
 - Caveat: decision-making costs
- Think it always should be true \Rightarrow select it (weakly)

- Don't think it *always* should be true \Rightarrow don't select it
 - Payment lotteries could be any lotteries in the domain
 - If there are any instances where it wouldn't be true, shouldn't select it
 - Caveat: decision-making costs
- Think it always should be true \Rightarrow select it (weakly)
 - Rule will automatically implement preferred choices
 - In another treatment, strict \$1 cost to decide on their own

- We study 3 "simple" axioms:
 - 1. Independence of Irrelevant Alternatives
 - 2. Transitivity
 - 3. Consistency
- And 3 "mixture" axioms:
 - 1. First-Order Stochastic Dominance
 - 2. (Mixture) Independence
 - 3. Branch Independence

SIMPLE AXIOMS

RULE REPRESENTATION: IIA

Behavioral violation: salience/rational inattention (BORDALO ET AL., 2012)

RULE REPRESENTATION: TRANSITIVITY

Behavioral violation: regret aversion (LOOMES AND SUGDEN, 1982)

RULE REPRESENTATION: CONSISTENCY

Behavioral violation: deliberate randomization (AGRANOV AND ORTOLEVA, 2017)

MIXTURE AXIOMS
RULE REPRESENTATION: FOSD

Behavioral violation: diversification (RUBINSTEIN, 2001)

RULE REPRESENTATION: INDEPENDENCE

Behavioral violation: prospect theory (каниеман and tversky, 1979)

RULE REPRESENTATION: BRANCH INDEPENDENCE

Behavioral violation: rank-dependent probability weighting (QUIGGIN, 1982)

BENCHMARK

• What if people

- just like to follow rules?
- think they should follow these rules (demand effect)?
- follow rules because it's easier than making their own choices?
- · have a preference for control and don't like to follow rules?
- are responsibility averse?
- ···

BENCHMARK

- What if people
 - just like to follow rules?
 - think they *should* follow these rules (demand effect)?
 - follow rules because it's easier than making their own choices?
 - have a preference for control and don't like to follow rules?
 - are responsibility averse?
 - ···
- We also present rules that are *intentionally bad* (c-axioms)
 - Opposite of each main axiom

RULE REPRESENTATION: IIA

IIA:

RULE REPRESENTATION: IIA

IIA:

RULE REPRESENTATION: C-IIA

- Subjects made *independent* choices across axiom and *c*-axiom
- Axiom and *c*-axiom presented on different screens, randomized order
 - Also included six "decoy" rules
- Use *c*-axiom selection rate as our benchmark for
 - Experimenter demand
 - Confusion
 - · Blind rule-following
 - Etc.

- Interpretation:
 - Select axiom and don't select c-axiom: \bigcirc

- Interpretation:
 - Select axiom and don't select c-axiom: \odot
 - Select *c*-axiom and don't select axiom: \bigcirc

- Interpretation:
 - Select axiom and don't select c-axiom: \bigcirc
 - Select *c*-axiom and don't select axiom: \bigcirc
 - Select both: Preference for rules, decisions are costly, etc...

- Interpretation:
 - Select axiom and don't select c-axiom: \bigcirc
 - Select *c*-axiom and don't select axiom: \bigcirc
 - Select both: Preference for rules, decisions are costly, etc...
 - Select neither: "it depends," preference for control...

- Interpretation:
 - Select axiom and don't select c-axiom: \bigcirc
 - Select *c*-axiom and don't select axiom: \bigcirc
 - Select both: Preference for rules, decisions are costly, etc...
 - Select neither: "it depends," preference for control...
- Why the *c*-axiom benchmark?
 - · Deliberately anti-normative
 - Same benchmark across all axioms
 - *c*-axiom takes same form as corresponding axiom
 - c-axiom takes same input questions as corresponding axioms

QUESTIONS ABOUT ELICITING PREFERENCES OVER RULES?

Do individuals still violate these axioms?

- Subjects made 33 choices over lotteries
- · Designed to detect violations of each of our six axioms
- E.g., to detect a violation of IIA:
 - Choice from {*p*, *q*, *r*}
 - Choice from $\{p,q\}$

LOTTERY CHOICES

- Picked questions based on "classic" violations in the literature
 - IND: certainty effect
 - IIA: decoy effect
 - TRANS: regret aversion
 - Etc.

LOTTERY CHOICES

- Picked questions based on "classic" violations in the literature
 - IND: certainty effect
 - IIA: decoy effect
 - TRANS: regret aversion
 - Etc.
- Independently optimized to detect violations of a single axiom
 - Not designed to compare across axioms

LOTTERY CHOICES

- Picked questions based on "classic" violations in the literature
 - IND: certainty effect
 - IIA: decoy effect
 - TRANS: regret aversion
 - Etc.
- Independently optimized to detect violations of a single axiom
 - Not designed to compare across axioms
- These lotteries are different from the lotteries that incentivize the axiom choices
- Note: All subjects made these decisions, regardless of axiom selection

How do individuals *reconcile* these inconsistencies?

- · For example, a subject who endorsed but violated IIA
 - · Chose IIA as an axiom
 - $p = C(\{p, q, r\})$
 - $q = C(\{p,q\})$

- · For example, a subject who endorsed but violated IIA
 - · Chose IIA as an axiom
 - $p = C(\{p, q, r\})$
 - $q = C(\{p,q\})$
- **Main Question**: How do they respond when confronted with this inconsistency?

- · For example, a subject who endorsed but violated IIA
 - · Chose IIA as an axiom
 - $p = C(\{p, q, r\})$
 - $q = C(\{p,q\})$
- **Main Question**: How do they respond when confronted with this inconsistency?
 - · Change decisions to conform to IIA
 - E.g., Savage
 - · We interpret this as a mistake

- · For example, a subject who endorsed but violated IIA
 - · Chose IIA as an axiom
 - $p = C(\{p, q, r\})$
 - $q = C(\{p,q\})$
- **Main Question**: How do they respond when confronted with this inconsistency?
 - · Change decisions to conform to IIA
 - E.g., Savage
 - We interpret this as a mistake
 - Unselect IIA
 - We interpret this as an intentional violation

Options:	You Pick: We Pick:	
vs. vs. vs.	•	

Options:	You Pick: We Pick:				
• vs. • vs. •	•	Black: 80% chance of \$0 20% chance of \$10 80% chan 20% chan	Gr 60% chan 40% chan 40% chan a ck : nce of \$0 nce of \$10	ey: ice of \$0 ice of \$6 60% chai 40% chai	White: 80% chance of \$0 20% chance of \$7 rey: nce of \$0 nce of \$6

Options:	You Pick: We Pick:			
• vs. • vs. •	•	Black : 80% chance of \$0 20% chance of \$10	Grey: 60% chance of \$0 40% chance of \$6	White: 80% chance of \$0 20% chance of \$7
		BI 80% char 20% char	ack: G nce of \$0 nce of \$10 40% cha	rey: nce of \$0 nce of \$6

CORRECTING A MISTAKE

CORRECTING A MISTAKE

CORRECTING A MISTAKE

UN-ENDORSING AXIOM

In the first row, you chose **Black**. In the second row, you chose **Grey**. **Black** and **Grey** are the same in these two decisions, so the rule would make the same choice between Options **Black** and **Grey** in the two choices.

C-AXIOM RECONCILIATION

In the first row, you chose **Black**. In the second row, you chose **Grey**. **Black** and **Grey** are the same in these two decisions, so the rule would make the same choice between Options **Black** and **Grey** in the two choices.

Paid for one randomly-selected decision

If paid from Part 1 (axiom choices)

INCENTIVIZATION: IIA

If we pay for IIA:

- Present the subject with three *new* lotteries: $\{p, q, r\}$
- Subject chooses their most preferred \mapsto "*p*"

INCENTIVIZATION: IIA

If we pay for IIA:

- Present the subject with three *new* lotteries: $\{p, q, r\}$
- Subject chooses their most preferred → "*p*"
- Did choose IIA: paid *p* as choice of *p* over *q*
- **Did not choose IIA**: presented with *p* vs. *q* and paid lottery chosen from this second question

If paid from Part 2 (lottery choices)

• Randomly select one of the 33 decisions a subject made

- Randomly select one of the 33 decisions a subject made
- · Pay lottery the subject chose in this decision

If paid from Part 3 (reconciled choices)

Subject chooses *p* from $\{p, q, r\}$, automatically paid *p* from $\{p, q\}$

Subject chooses *p* from $\{p, q, r\}$, paid own choice from $\{p, q\}$

Paid lottery selected

Paid lottery selected

- · Initial data collection in-person
- 110 Ohio State undergraduate students
 - · Robustness treatment with 114 additional subjects
 - · Replicated online with 500 Prolific participants
- Sessions lasted about an hour, $\sim \$15$
- Paid after everyone finished

RESULTS

Main Questions:

1. How often do individuals choose the axioms? *c*-axioms?

Main Questions:

- 1. How often do individuals choose the axioms? *c*-axioms?
- 2. Does choosing an axiom lead to fewer violations of the axiom?

Main Questions:

- 1. How often do individuals choose the axioms? *c*-axioms?
- 2. Does choosing an axiom lead to fewer violations of the axiom?
- 3. How do individuals reconcile violations of axioms they had chosen?
 - Change choices to agree with axiom? (à la Savage)
 - · Keep choices an un-endorse axiom?

Axiom Choices

Axiom Choices

Axiom Choices

~ 85% select axioms (76% select only axiom)

Axiom Choices

~ 15% select *c*-axioms (3% select only *c*-axiom)

Number of <i>c</i> -Axioms Selected								
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0								
1								
2								
3								
4								
5								
6								
Total								100

Number of <i>c</i> -Axioms Selected								
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0								3.6
1								1.8
2								2.7
3								6.4
4								8.2
5								17.3
6								60
Total								100

Number of <i>c</i> -Axioms Selected								
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0								3.6
1								1.8
2								2.7
3								6.4
4								8.2
5								17.3
6								60
Total								100

Number of <i>c</i> -Axioms Selected								
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0								3.6
1								1.8
2								2.7
3								6.4
4								8.2
5								17.3
6								60
Total	64.5	22.7	5.5	1.8	2.7	0.9	1.8	100

Number of <i>c</i> -Axioms Selected								
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0								3.6
1								1.8
2								2.7
3								6.4
4								8.2
5								17.3
6								60
Total	64.5	22.7	5.5	1.8	2.7	0.9	1.8	100
	Number of <i>c</i> -Axioms Selected							
----------	-------------------------------------	------	-----	-----	-----	-----	-----	-------
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0	2.7	_	_	_	_	_	0.9	3.6
1	0.9	_	0.9	_	_	_	_	1.8
2	2.7	_	_	_	_	_	_	2.7
3	3.6	_	_	_	1.8	0.9	_	6.4
4	3.6	2.7	1.8	_	_	_	_	8.2
5	11.8	2.7	1.8	_	0.9	_	_	17.3
6	39.1	17.3	0.9	1.8	_	_	0.9	60
Total	64.5	22.7	5.5	1.8	2.7	0.9	1.8	100
A					1			

Axiom and *c*-selection axiom at a subject-level, in percent

	1	Numbe	r of <i>c</i> -	-Axior	ms Sel	lected		
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0	2.7	_	_	_	_	_	0.9	3.6
1	0.9	_	0.9	_	_	_	_	1.8
2	2.7	_	_	_	_	_	_	2.7
3	3.6	_	_	_	1.8	0.9	_	6.4
4	3.6	2.7	1.8	_	_	_	_	8.2
5	11.8	2.7	1.8	_	0.9	_	_	17.3
6	39.1	17.3	0.9	1.8	_	_	0.9	60
Total	64.5	22.7	5.5	1.8	2.7	0.9	1.8	100
Axio	m and c	selection	1 axiom	at a su	ıbject-le	evel, in	percent	

	1	Numbe	r of <i>c</i> -	-Axio	ms Sel	lected		
#Axioms								
Selected	0	1	2	3	4	5	6	Total
0	2.7	_	_	_	_	_	0.9	3.6
1	0.9	_	0.9	_	_	_	_	1.8
2	2.7	_	_	_	_	_	_	2.7
3	3.6	_	_	_	1.8	0.9	_	6.4
4	3.6	2.7	1.8	_	_	_	_	8.2
5	11.8	2.7	1.8	_	0.9	_	_	17.3
6	39.1	17.3	0.9	1.8	_	_	0.9	60
Total	64.5	22.7	5.5	1.8	2.7	0.9	1.8	100
Axio	m and c	selection	1 axiom	at a su	ıbject-le	evel, in	percent	

44

Main Results:

1. Individuals select axioms at very high rates

· Aggregating across all questions and all axioms...

• 27% of choices violate an axiom

- Aggregating across all questions and all axioms...
 - 27% of choices violate an axiom
- Are these violations from individuals who chose the axiom or those who did not?

- Aggregating across all questions and all axioms...
 - 27% of choices violate an axiom
- Are these violations from individuals who chose the axiom or those who did not?
- 87% of violations are from individuals who indicated initial agreement with the axiom
 - Conditional on choosing: violate in 24% of instances
 - Conditional on not choosing: violate in 30% of instances (p = 0.131)

Main Results:

- 1. Individuals select axioms at very high rates
- 2. Individuals selecting an axiom are no less likely to violate it

• In total, 468 instances of subjects violating an axiom they had chosen

- In total, 468 instances of subjects violating an axiom they had chosen
- How do individuals respond when confronted with this inconsistency?

- In total, 468 instances of subjects violating an axiom they had chosen
- How do individuals respond when confronted with this inconsistency?
 - Un-select axiom
 - Violation reflects intentional deviation; axiom is not universal

- In total, 468 instances of subjects violating an axiom they had chosen
- How do individuals respond when confronted with this inconsistency?
 - Un-select axiom
 - Violation reflects intentional deviation; axiom is not universal
 - Change lottery choices (à la Savage)
 - · Lottery choices constituted a mistake

% Unselect	% Change	% Change	% Keep
Axiom	Lotteries	Both	Inconsistent
	% Unselect Axiom	% Unselect % Change Axiom Lotteries	% Unselect % Change % Change Axiom Lotteries Both

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%		
IIA				
TRANS				
CONS				

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%		
IIA				
TRANS				
CONS				

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%		
IIA				
TRANS				
CONS				

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA				
TRANS				
CONS				

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%
Mixture Axiom Total				

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%
Mixture Axiom Total	18%	32%		

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%
Mixture Axiom Total	18%	32%		

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%
Mixture Axiom Total	18%	32%	2%	48%

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%
Mixture Axiom Total	18%	32%	2%	48%
FOSD	21%	29%	1%	49%
IND	16%	34%	3%	47%
BRANCH	0%	55%	5%	41%

	% Unselect	% Change	% Change	% Keep
Axiom	Axiom	Lotteries	Both	Inconsistent
Simple Axiom Total	2%	76%	6%	16%
IIA	2%	78%	2%	19%
TRANS	5%	68%	10%	17%
CONS	0%	79%	8%	13%
Mixture Axiom Total	18%	32%	2%	48%
FOSD	21%	29%	1%	49%
IND	16%	34%	3%	47%
BRANCH	0%	55%	5%	41%

Conditional on reconciling, 80% change lotteries (p < 0.001)

• Over 2/3 axiom violations reconciled

- Over 2/3 axiom violations reconciled
- When reconciled, more likely to change lottery choices to be *consistent with the axiom*
 - Just as Savage did
 - · Interpretation: many violations were "mistakes"

- Over 2/3 axiom violations reconciled
- When reconciled, more likely to change lottery choices to be *consistent with the axiom*
 - Just as Savage did
 - · Interpretation: many violations were "mistakes"
- Do people always revise in favor of rules?
 - Compare to *c*-axiom revisions
 - But there are issues of selection

	% Unselect	% Change	% Change	% Keep
<i>c</i> –Axiom	Axiom	Lotteries	Both	Inconsistent
Simple <i>c</i> -Axiom Total	44%	22%	3%	31%

	% Unselect	% Change	% Change	% Keep
<i>c</i> –Axiom	Axiom	Lotteries	Both	Inconsistent
Simple <i>c</i> -Axiom Total	44%	22%	3%	31%
c-IIA	44%	15%	2%	39%
<i>c</i> -TRANS	50%	27%	0%	23%
c-CONS	17%	50%	33%	0%
Mixture <i>c</i> -Axiom Total	29%	29%	1%	41%
c-FOSD	19%	44%	0%	38%
c-IND	30%	26%	4%	41%
<i>c</i> -BRANCH	50%	0%	0%	50%

Conditional on reconciling, 40% change lotteries

- Can't fully control for selection here
- Condition just on people who select axiom and *c*-axiom
 - Axiom: Change lotteries 40%, un-select axiom 23%
 - c-Axiom: Change lotteries 19%, un-select c-axiom 43%

- Can't fully control for selection here
- Condition just on people who select axiom and *c*-axiom
 - Axiom: Change lotteries 40%, un-select axiom 23%
 - c-Axiom: Change lotteries 19%, un-select c-axiom 43%
- We also allow them to reconcile conflicting rules
 - Conditional on un-selecting one, 89% un-select the *c*-axiom
 - Note: some sample sizes of *c*-axiom selection are very small

Main Results:

- 1. Individuals select axioms at very high rates
- 2. Individuals selecting an axiom are no less likely to violate it
- 3. Two-thirds of axiom and c-axiom violations are revised
- 4. Revisions are more likely to favor axioms than c-axioms

REPLICATION AND ROBUSTNESS

• One reason to use (good and bad) rules is that it's hard to make decisions on your own

- One reason to use (good and bad) rules is that it's hard to make decisions on your own
- We can't observe decision costs, but we can exogenously make decisions *more* costly
 - Cost: pay \$1 to make choices on your own

- One reason to use (good and bad) rules is that it's hard to make decisions on your own
- We can't observe decision costs, but we can exogenously make decisions *more* costly
 - Cost: pay \$1 to make choices on your own
- Do people follow rules more?
 - Result: not much
 - Interpretation: axiom selection is not primarily due to decision avoidance

% of revisions in favor of axiom:

	\$0 Treatment	\$1 Treatment	
Axioms	79%	91%	
<i>c</i> –Axioms	40%	50%	
<i>p</i> -value	< 0.001	< 0.001	

% of revisions in favor of axiom:

	\$0 Treatment	\$1 Treatment	
Axioms	79%	91%	
<i>c</i> –Axioms	40%	50%	
<i>p</i> -value	< 0.001	< 0.001	

Follow rules *slightly more* (< 10pp) when decisions are costly

Still revise more often to follow axioms

- Replicated our results online
- Prolific online research platform
 - General population
 - Primarily US and UK
 - Generally young, high school or college educated
- Focus just on IND as a "stress test"

REPLICATION

Violate IND more online (41% vs. 34%, p = 0.022)

Violate IND more online (41% vs. 34%, p = 0.022)

-	Кеер	Unselect	Change	Change and
Axiom	Inconsistent	Axiom	Lotteries	Still Inconsistent
Lab IND	47%	16%	34%	3%
Online IND	40%	24%	31%	5%

CONCLUSION

- We revisit some of the canonical axiom violations in behavioral economics
- · Evidence that not all violations are intentional deviations
 - Some are better thought of as *mistakes*
 - Source of mistakes?
 - Thinking costs
 - Cognitive constraints
 - Etc.
- Implies that we shouldn't necessarily use descriptive models to make welfare statements
- We use axioms as a proof of concept, but opens bigger questions for behavioral economists

THE END